FHCSF 19.4.1.2-Z

RECEIVED

JAN 1 4 2013

OFFICE OF ENVIRONMENTAL CLEANUP

FRONTIER HARD CHROME LONG-TERM MONTORING REPORT EVENT 18 VANCOUVER, WASHINGTON

Prepared for

Washington State Department of Ecology PO Box 47600 Olympia, Washington 98504

Weston Work Order No. 10799.004.004.0002

December 2012

Prepared by

Weston Solutions, Inc. 190 Queen Anne Avenue North Suite 200 Seattle, WA 98109

> USEPA SF 1429435

FRONTIER HARD CHROME LONG-TERM MONTORING REPORT EVENT 18 VANCOUVER, WASHINGTON

Prepared for

Washington State Department of Ecology PO Box 47600 Olympia, Washington 98504

Prepared and Approved By:

Greg Stuesse, PE, LG Senior Project Manager Date: December 27, 2012

TABLE OF CONTENTS

Sec	<u>tion</u>	<u>P</u>	age
1.	INT	RODUCTION AND BACKGROUND	1-1
	1.1	INTRODUCTION	
	1.2	BACKGROUND AND PROBLEM DEFINITION	1-2
		1.2.1 Site Background	1-2
		1.2.2 Problem Definition	1-2
	1.3	MONITORING SCHEDULE	1-3
2.	SAM	IPLING ACTIVITIES AND RESULTS	2-1
	2.1	MONITORING WELL SAMPLING PROCEDURES	2-1
	2.2	ANALYTICAL RESULTS	2-2
		2.2.1 Chromium	2-2
		2.2.2 Water Quality	2-3
	2.3	GROUNDWATER FLOW DIRECTION AND ELEVATION	2-3
	2.4	QUALITY ASSURANCE	2-4
	2.5	INVESTIGATION-DERIVED WASTES	
	2.6	DISCUSSION AND CONCLUSIONS	2-5
3.	ANA	ALYTICAL METHODS AND DATA VALIDATION	
	3.1	ANALYTICAL METHODS REQUIREMENTS AND DATA VALIDATION	3-1
4.	REF	TERENCES	4-1
	APP	PENDIX A GROUNDWATER CHROMIUM CONCENTRATION TRENDS	
	APP	PENDIX B LABORATORY DATA SHEETS	
	APP	PENDIX C RECONSTRUCTED MONITORING WELL ELEVATIONS	
	APP	PENDIX D DATA VALIDATION MEMORANDUM	
	APP	PENDIX E MONITORING WELL CONSTRUCTION AND FIELD DATA SHEETS	

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
1	Vicinity Map
2	Monitoring Well Locations
3	Chromium Concentrations in "A" Zone Groundwater
4	Chromium Concentrations in "B" Zone Groundwater
5	Groundwater Elevations

LIST OF TABLES

<u>Table</u>	<u>Title</u>
1	Event 18 Chromium Results
2	Event 18 Monitoring Field Parameters
3	Comparison of Conventional Parameters
4	Event 18 Groundwater Elevations
5	Quality Assurance Sample Results

1. INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

This Long-Term Monitoring Report has been prepared under an individual Authorization/Contract with the State of Washington Department of Ecology (Ecology) for Long-Term Monitoring of the Frontier Hard Chrome (FHC) site located in Vancouver, Washington.

This report describes the sampling activities performed and analytical results obtained during "Event 18" of the Long-Term Groundwater Monitoring program at FHC. Sampling activities for Event 17 were conducted from October 15-18, 2012.

The FHC site was the subject of a remedial action (RA) conducted during the summer of 2003. The purpose of the remedial action was to treat the site's chromium-contaminated soil and groundwater to cleanup levels specified in the Record of Decision. Long-term monitoring is required to track off-site plume concentrations as well as show that the remedy is maintaining its operational functionality.

The first three FHC groundwater monitoring events (Events 1 through 3) were conducted for the United States Environmental Protection Agency (EPA). In October 2004, responsibility for the site was turned over to Ecology. Ecology contracted Weston Solutions, Inc. (WESTON®) to perform the next two rounds of monitoring (Events 4 and 5) as a result of WESTON's familiarity with this site and the associated property owners. Ecology amended WESTON's contract in February 2006 and again in July 2007 to perform 14 additional rounds of quarterly monitoring with the last to be completed in June 2009.

In the summer and fall of 2007, EPA conducted a Long-Term Monitoring Optimization (LTMO) study to assess monitoring requirements at the FHC site. As a result of this study, ten wells were deleted from the monitoring program (EPA, 2008). Ecology amended WESTON's contract to delete the remaining monitoring events except for Event 14, which was completed in September 2008. Event 15 (September, 2009), Event 16 (September, 2010), Event 17 (September, 2011), and Event 18 (October 2012) were each completed under annually-issued individual Authorization/Contracts

This report documents the results of sampling under the new individual Authorization/Contract between Ecology and WESTON.

All Event 18 work was performed in accordance with the project work plan titled *Frontier Hard Chrome, Long-Term Monitoring Plan* (Weston, 2004).

1.2 BACKGROUND AND PROBLEM DEFINITION

1.2.1 Site Background

The FHC site is located at 113 "Y" Street in southeastern Vancouver, Washington. The site is located in Section 25, Township 2 North, Range 1 East, of the Willamette Meridian in Clark County, Washington. The geographic coordinates for the site are 45° 37' 18.8" North latitude and 122° 38' 43.3" West longitude. A site location map is shown in Figure 1.

The site was historically occupied by several metal fabricating businesses. In addition, the site was historically used for storage and as a staging area for adjacent facilities. As of October 2012, there were no buildings or permanent structures located on site. The entirety of the site, as well as the adjacent parcels to the south and east, were enclosed behind a chain link fence and were being used for equipment/vehicle storage and minor maintenance of plumbing and heating, ventilation, and air-conditioning (HVAC) equipment. The site encompasses approximately 0.5 acres and is bordered to the north by a scrap metal facility, to the east by a campus of the Northwest Renewable Energy Institute, to the south by the property addressed as 2428 East 1st Street (formerly occupied by the Test-U truck driving school), and to the west by "Y" Street. A site layout map is shown in Figure 2.

The FHC site was historically occupied by chrome plating facilities between approximately 1958 and 1983. The property was first developed in approximately 1958 with the addition of hydraulic dredge fill material and construction rubble. Pioneer Plating operated at the site from approximately 1958 to 1970 and Frontier Hard Chrome operated at the site from approximately 1970 to 1983. Between approximately 1958 and 1976, untreated process wastewater from the facility, which included hexavalent chromium and additional heavy metals, was discharged directly to the City of Vancouver's sanitary sewer system. In approximately 1976, the City of Vancouver and Ecology requested that the facility cease discharging all chromium-contaminated wastewaters to the system. Subsequent to this request, Frontier Hard Chrome began discharging the untreated chromium-contaminated wastewater to an on-site "dry well," which continued for approximately seven years. In December 1982, the FHC site was proposed for inclusion on the National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liabilities Act (CERCLA or Superfund). FHC terminated its operations in January 1983.

Work began on the remedial design for the FHC site in October 2001 and was completed in February 2003. The RA; which consisted of building demolition, treatment of source area soil and groundwater, and installation of an in-situ redox manipulation (ISRM) treatment wall; was completed in September 2003.

1.2.2 Problem Definition

The goal of the RA was to treat source area soil and groundwater to reduce hexavalent chromium concentrations such that groundwater downgradient of the site would attenuate to chromium concentrations of less than 50 micrograms per liter (µg/L). To demonstrate this, groundwater quality was monitored in two areas. The first area consisted of wells located immediately within and downgradient of the ISRM treatment wall, which were monitored to ensure the continued

operational functionality of the ISRM wall. The second area consisted of the historical chromium-contaminated groundwater plume located downgradient of the ISRM wall. This plume, which did not receive treatment during the RA, was monitored to track the long-term expected reduction in chromium concentrations as a result of the elimination of the source of hexavalent chromium and the ISRM wall.

Long-term groundwater monitoring is required by the site's Record of Decision. Additional information regarding regulatory actions related to the FHC site is available at the EPA Region 10 Cleanup Sites website: http://yosemite.epa.gov/R10/cleanup.nsf/sites/cleanuplist.

1.3 MONITORING SCHEDULE

Groundwater sampling and monitoring events were conducted approximately quarterly by EPA for the first year after completion of the RA. Planned events were completed in February, April, and August 2004. The sampling event performed the week of August 16, 2004 concluded monitoring for approximately one year after the RA was completed.

In September/October 2004, monitoring of the FHC site was turned over to Ecology. Sampling of the site groundwater for Ecology occurred in May and December 2005 under the Original Contract with WESTON. In February 2006, Ecology amended WESTON's contract (Amendment #1) to perform six additional rounds of quarterly monitoring that would occur in March 2006, June 2006, September 2006, December 2006, March 2007, and June 2007.

In July 2007, additional funding was received from Ecology for an additional eight quarters of groundwater monitoring (Amendment #3). These additional quarterly monitoring events were scheduled for September 2007, December 2007, March 2008, June 2008, September 2008, December 2008, March 2009, and June 2009.

In June 2008 as a result of the recommendations of the LTMO study (EPA 2008), Ecology issued Amendment #4 to WESTON which removed the remaining rounds of sampling from the contract with the exception of a single event to be completed in September 2008. The work conducted in September 2009 (Event 15), September 2010 (Event 16), and September 2011 (Event 17) was completed under individual Authorization/Contracts.

This report documents the results of the October 2012 (Event 18) sampling event.

2. SAMPLING ACTIVITIES AND RESULTS

2.1 MONITORING WELL SAMPLING PROCEDURES

Sampling activities for Event 18 were conducted from October 15 through October 18, 2012 by WESTON staff in accordance with the *Long-Term Monitoring Plan* (Weston 2004). The monitoring wells in the vicinity of the FHC site are shown on Figure 2. Twenty-two (22) wells were sampled in October 2012. These wells consisted of the following:

Shallow "A" Zone Wells:	Deep "B" Zone Wells:
B85-3	RA-MW-12B
B85-4	RA-MW-12C
B87-8	RA-MW-15B
RA-MW-12A	RA-MW-16B
RA-MW-15A	W85-6B
RA-MW-16A	W92-16B
RA-MW-17A	W97-19B
W85-6A	W98-21B
W92-16A	W99-R5B
W97-18A	
W97-19A	
W98-21A	
W99-R5A	

Monitoring well construction information and the field data sheets from Event 18 are provided in Appendix E.

Well purging and sampling were performed according to sampling guidelines and WESTON standard operating procedures (SOPs). The wells were sampled with a peristaltic pump equipped with new polyethylene tubing deployed to mid-screen depth at each well. The wells were purged prior to sampling until monitored field parameters (turbidity, conductivity, pH, dissolved oxygen, ORP, and temperature) stabilized. The field parameter readings were recorded on field sampling forms.

Based upon the Event 16 (September 2010) analytical results, EPA and Ecology determined that it was no longer necessary to analyze the FHC groundwater samples for the complete list of Priority Pollutant (PP) metals and only chromium was retained for the Event 17 (September 2011) and the Event 18 (October 2012) analyses.

All wells were sampled for total chromium per EPA Method 200.7 inductively-coupled plasma/atomic emission spectrometry (ICP-AES). In cases where groundwater turbidity was greater than 10 nephalometric turbidity units (NTUs), samples were passed through a 0.45-micron filter in the field and submitted for dissolved chromium analysis. A total of three field-filtered groundwater samples submitted for dissolved chromium analysis. These samples were collected from wells: RA-MW-12A, which had a turbidity reading in excess of 10 NTU; RA-MW-15B, which had a turbidity reading of less than 10 NTU but has historically exhibited anomalously elevated chromium concentrations in unfiltered samples; and B87-8, which had a turbidity reading of less than 10 NTU but was observed to have black particulates in the water column. Total and dissolved chromium concentrations from the 22 collected samples are presented in Table 1.

One well, B87-8, was additionally sampled for hexavalent chromium. This sample, which was not field filtered since the turbidity was less than 10 NTU, was collected and delivered to the laboratory on October 17, 2012.

Selected samples were analyzed for sulfate and dissolved sulfur to provide an assessment of the distribution of byproducts from the reducing agent used during ISRM treatment wall installation. Dissolved sulfur samples were passed through a 0.45-micron filter in the field. These samples were collected from wells: W85-6A, W99-R5A, B85-4, and B87-8. Sulfate and dissolved sulfur concentrations, as well as additional measured field parameters are presented in Table 2.

2.2 ANALYTICAL RESULTS

2.2.1 Chromium

Chromium was detected in 8 of the 22 wells sampled. The laboratory reporting limit for total chromium was 2.50 μ g/L and for dissolved chromium was 5.00 μ g/L.

Seven of the shallow "A" zone wells exhibited chromium concentrations that were at or above the laboratory reporting limit. These wells included: RA-MW-12A (61.9 μ g/L total chromium, 6.08 μ g/L dissolved chromium), RA-MW-15A (9.00 μ g/L total chromium), B87-8 (6.86 μ g/L total chromium, < 5 μ g/L dissolved chromium), W85-6A (4.21 μ g/L total chromium), W98-21A (2.95 μ g/L total chromium), RA-MW-17A (2.71 μ g/L total chromium), and W92-16A (2.50 μ g/L total chromium). The shallow "A" zone groundwater chromium concentrations and estimated plume contours are presented in Figure 3. Filtered sample data (when available) were used in preparing Figure 3.

Three of the deeper "B" zone wells exhibited chromium concentrations that were at or above the laboratory reporting limit. These wells included: W92-16B (3.03 μ g/L total chromium), RA-MW-16B (3.03 μ g/L total chromium), and W85-6B (2.50 μ g/L total chromium). The deeper "B" zone groundwater chromium concentrations and estimated plume contours are presented in Figure 4. Filtered sample data (when available) were used in preparing Figure 4.

Hexavalent chromium was not detected at a concentration greater than the method reporting limit of 50 μ g/L in the groundwater sample collected from well B87-8.

Figures showing the chromium concentration trends in groundwater over time are included in Appendix A. Filtered sample data (when available) were used in preparing the figures. Available data from wells sampled during Operational and Functional monitoring in November/December 2003 are included to assist in determining trends. The Event 18 laboratory data sheets for chromium are provided in Appendix B.

2.2.2 Water Quality

Dissolved oxygen (DO) concentrations measured during the Event 18 sampling ranged from a low of 0.17 mg/L to a high of 10.86 mg/L. DO averaged 1.19 mg/L in samples collected from wells within the ISRM treatment wall (RA-MW-12A [2.88 mg/L], RA-MW-12B [0.20 mg/L], RA-MW-12C [0.49 mg/L]). The DO concentrations indicate the wall is still reductive which is necessary for treatment of hexavalent chromium. Samples of groundwater collected downgradient of the ISRM treatment wall had similar concentrations of DO compared to those within the treatment wall.

The groundwater pH measured during the Event 18 sampling ranged from 6.25 to 7.78. The maximum pH was measured in well RA-MW-12C and the minimum pH was measured in well W97-18A.

Sulfate concentrations from the four submitted samples ranged from 14.6 mg/L to 62.5 mg/L and dissolved sulfur concentrations ranged from 5.1 mg/L to 22.0 mg/L. The maximum sulfur and sulfate concentrations were exhibited in the samples collected from well B87-8, which is located downgradient of the ISRM treatment wall along the south side of East 1st Street.

2.3 GROUNDWATER FLOW DIRECTION AND ELEVATION

Groundwater surface elevations were determined using the known elevation of the top of each well casing and the depth to groundwater measured in each long-term monitoring well. The depth to groundwater measurements were collected from 18 wells between approximately 12:00 and 14:00 hours on October 15, 2012. Groundwater elevations were not measured in well W85-3A since the well could not be located. Groundwater elevation data is presented in Table 4 and Figure 5.

The calculated groundwater elevations in wells W97-19A and W97-19B have been anomalously low during the last several sampling events. The casing elevations for these two wells, in addition to three other wells, were corrected after completion of the RA due to two different datums having been historically used at the site. The remaining three wells were resurveyed in 2007 due to the development of the shopping center. It is suspected that the correction factor, which was an average based on the relative differences from eight wells, is not appropriately applied to these wells. Based upon this information, data from these wells was not used in groundwater flow direction and elevation calculations.

A new concrete pad for roll-off containers was installed at the location of well W98-20A since the previous sampling event. The well monument visually appeared to have been preserved during the installation of the pad; however, the groundwater elevation measurements collected from the well during this event were anomalously high. It is suspected that the well casing may have been impacted by the construction of the concrete pad and this well was not used in groundwater flow direction and elevation calculations.

The Columbia River elevation at the United State Geological Survey (USGS) gauging station 14144700, which is located approximately 1.3 miles west of the FHC site at the northern end of the I-5 Bridge, was obtained for use in determining flow direction. Between 12:00 and 14:00 hours on October 15, 2012, the elevation of the river ranged from 2.94 to 3.42 feet above mean sea level (AMSL) (corrected to NGVD 1929 by adding 1.82 feet to the measured gage height). The daily mean elevation for October 15, 2012 was 4.60 feet AMSL. The river elevation information can be obtained from http://waterdata.usgs.gov/usa/nwis/uv?14144700.

Excluding the anomalous data from wells W97-19A, W97-19B, and W98-20A; the groundwater surface elevations ranged from 4.60 feet AMSL in well W99-R5A to 4.83 feet AMSL in well B85-3. Utilizing the depth to groundwater data collected between 12:09 and 13:39 on October 15, 2012, groundwater in the vicinity of the FHC site flows in a generally southwest to west-southwest direction with a horizontal gradient of approximately 0.00008 feet per foot (ft/ft). Due to the relatively flat gradient at the site, the groundwater flow direction is estimated to vary across the field area.

2.4 QUALITY ASSURANCE

Data quality was verified by collecting field duplicate samples. Laboratory duplicates and matrix spike analyses were performed by the analytical laboratory. The quality control results are presented in Table 5.

Field duplicates were collected from four of the sampled wells including: W85-6A (QA-1), B85-4 (QA-2), RA-MW-15B (QA-3), and RA-MW-12A (QA-4). The duplicate sample collected from W85-6A was analyzed for sulfate. The duplicate samples collected from B85-4 and RA-MW-12A were analyzed for total chromium (unfiltered). The duplicate sample collected from RA-MW-15B was analyzed for dissolved chromium (filtered) and total chromium (unfiltered).

The field duplicate sample, QA-1, collected from well W85-6A, had good correlation with the original sample result for sulfate [0.5% relative percent difference (RPD)].

The field duplicate sample, QA-2, collected from well B85-4, could not be correlated to the original sample result for total chromium since neither the duplicate nor the original sample exhibited concentrations of this analyte above the laboratory reporting limits.

The field duplicate sample, QA-3, collected from well RA-MW-15B, could not be correlated to the original sample result for either total chromium or dissolved chromium since neither the duplicate nor the original sample exhibited concentrations of these analytes above the laboratory reporting limits.

The field duplicate sample, QA-4, collected from well RA-MW-12A, had relatively poor correlation with the original sample result for total chromium (16.9% RPD). Well RA-MW-12A has a relatively slow recharge rate and the groundwater from this well has relatively high

turbidity (12.1 NTU). The relatively high RPD between the duplicate and original samples from this well is likely due to variations in the amount of total suspended solids.

2.5 INVESTIGATION-DERIVED WASTES

Investigation-derived waste (IDW) generated during the sampling event consisted of well purge/decontamination water, used PPE, and disposable sampling supplies. During sampling, purge/decontamination water was stored on site in 5-gallon buckets. At the completion of sampling event, the water was transported to the City of Vancouver's operations center and disposed of in accordance with the Special Wastewater Discharge Authorization Number 2010.06, which was issued to WESTON by the City of Vancouver on September 7, 2010 and is valid through September 7, 2015. Approximately 60 gallons of purge/decontamination water was disposed to the City's sanitary sewer system. PPE and other solid IDW were disposed to general refuse.

2.6 DISCUSSION AND CONCLUSIONS

Chromium concentrations, which are reported here using dissolved (field-filtered) fractions when available, were detected above laboratory reporting limits in 6 of the 13 samples collected from the wells screened in the shallower "A" groundwater zone. The concentrations ranged from 2.50 micrograms per liter (μ g/L) to 9 μ g/L. The maximum concentration was detected in well RA-MW-15A, which is located immediately downgradient from the in-situ redox manipulation (ISRM) treatment wall. The remaining five samples with detectable concentrations were collected from wells RA-MW-12A, RA-MW-17A, W92-16A, W85-6A, and W98-21A. Well RA-MW-12A is located at the ISRM treatment wall. The remaining four wells are located approximately 75 feet east, 105 feet southwest, 550 feet south, and 850 feet south of the ISRM, respectively. During the sampling of well RA-MW-12A, groundwater was observed to be relatively turbid throughout the purging process. This relatively high turbidity is thought to be due to the presence of insoluble chromium compound particulates. The sample collected from well B87-8 was additionally analyzed for hexavalent chromium; however, the sample did not exhibit a concentration that exceeded the laboratory reporting limit of 50 μ g/L. The relative locations of the sampled "A" zone wells are presented in Figure 3.

Chromium concentrations were detected above laboratory reporting limits in 3 of the 9 samples collected from within the wells screened in the deeper "B" groundwater zone. The concentrations of the samples, which are reported here using dissolved (field-filtered) fractions when available, ranged from 2.50 μ g/L to 3.03 μ g/L. These samples were collected from wells RA-MW-16B, W92-16B, and W85-6B; which are located approximately 110 feet southeast, 115 feet southwest, and 550 feet south of the ISRM, respectively. The relative locations of the sampled "B" zone wells are presented in Figure 3.

The exhibited concentrations in samples collected from both the shallow "A" groundwater zone and the deeper "B" groundwater zone were similar to those reported during the previous Event 17 (September 2011) sampling event.

Dissolved oxygen (DO) data collected from the three sampled wells at the ISRM treatment wall; which included RA-MW-12A, RA-MW-12B, and RA-MW-12C; indicates that an area of reducing conditions still exists and therefore that the hexavalent chromium treatment zone is still

active. The DO concentrations at these wells ranged from 2.88 milligrams per liter (mg/L) in the shallow well to 0.20 mg/L and 0.49 mg/L in the deeper wells. In addition, the negative oxygen reduction potential (ORP) data collected from these wells, which ranged from -178 millivolts (mV) to -278 mV, implies that reducing conditions are present within the ISRM treatment wall.

Sulfur and Sulfate concentrations in the two sampled wells (B87-8 and B85-4) that are located approximately 200 feet downgradient of the ISRM treatment wall were approximately 49 percent higher than the previous Event 17 concentrations. The concentrations in the two sampled wells (W85-6A and W99-R5A) that are located between approximately 550 feet and 2,400 feet downgradient of the ISRM wall were similar to the previous round of sampling.

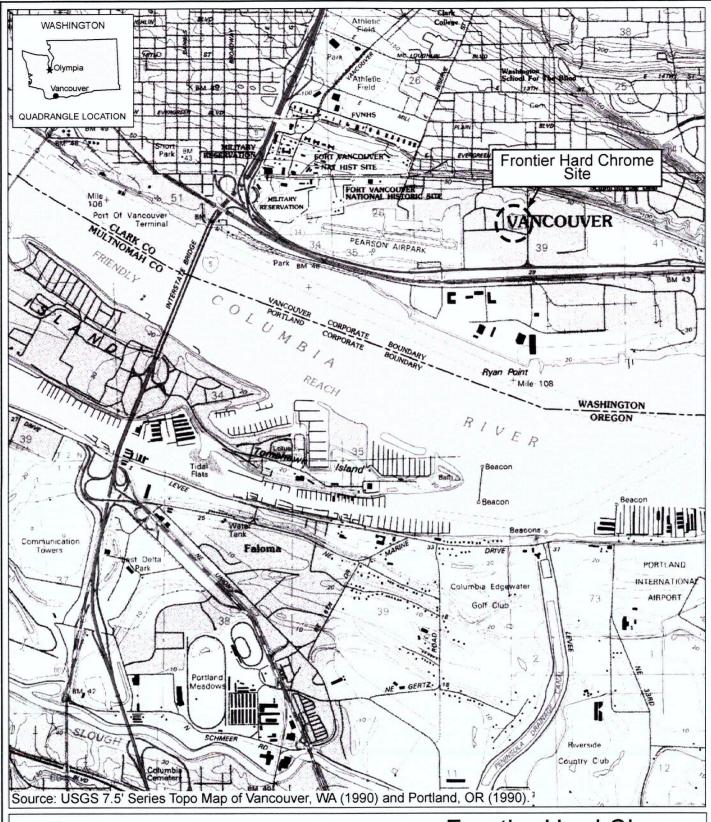
3. ANALYTICAL METHODS AND DATA VALIDATION

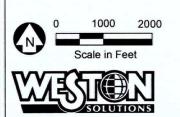
3.1 ANALYTICAL METHODS REQUIREMENTS AND DATA VALIDATION

The laboratory data quality assurance review and validation of analytical results for 26 water samples has been completed (22 field samples and 4 field duplicate samples). Samples were collected between October 15 and 18, 2012 from monitoring wells at the Frontier Hard Chrome site and were analyzed for total recoverable chromium. In addition, three samples were analyzed for dissolved chromium, one sample was analyzed for hexavalent chromium, and four samples were analyzed for both sulfate and dissolved sulfur.

The quality assurance review was performed on the laboratory data sheets and the Ecology memorandum to ensure that the analytical results met data quality objectives for the project. All laboratory quality assurance results as applicable (e.g., holding times, blank sample analysis, matrix spike/duplicate analysis, laboratory control sample analysis) supplied to WESTON for the analyses met acceptance criteria specified in the work plan (Weston 2004), with no exceptions noted.

Samples collected from three wells; RA-MW-12A, RA-MW-15B, and B87-8; were collected both as total recoverable and dissolved fractions – with one fraction submitted for total recoverable chromium analysis and the other filtered at the time of collection and submitted for dissolved chromium analysis. An additional sample was collected from wells RA-MW-12A, RA-MW-15B, and B85-4 as field duplicates and submitted for total recoverable chromium analysis. Additionally, a field duplicate sample was collected from well RA-MW-15B and submitted for dissolved chromium analyses and a field duplicate sample was collected from well W85-6A and submitted for sulfate analysis. Field duplicate samples were not collected for hexavalent chromium or dissolved sulfur analysis.

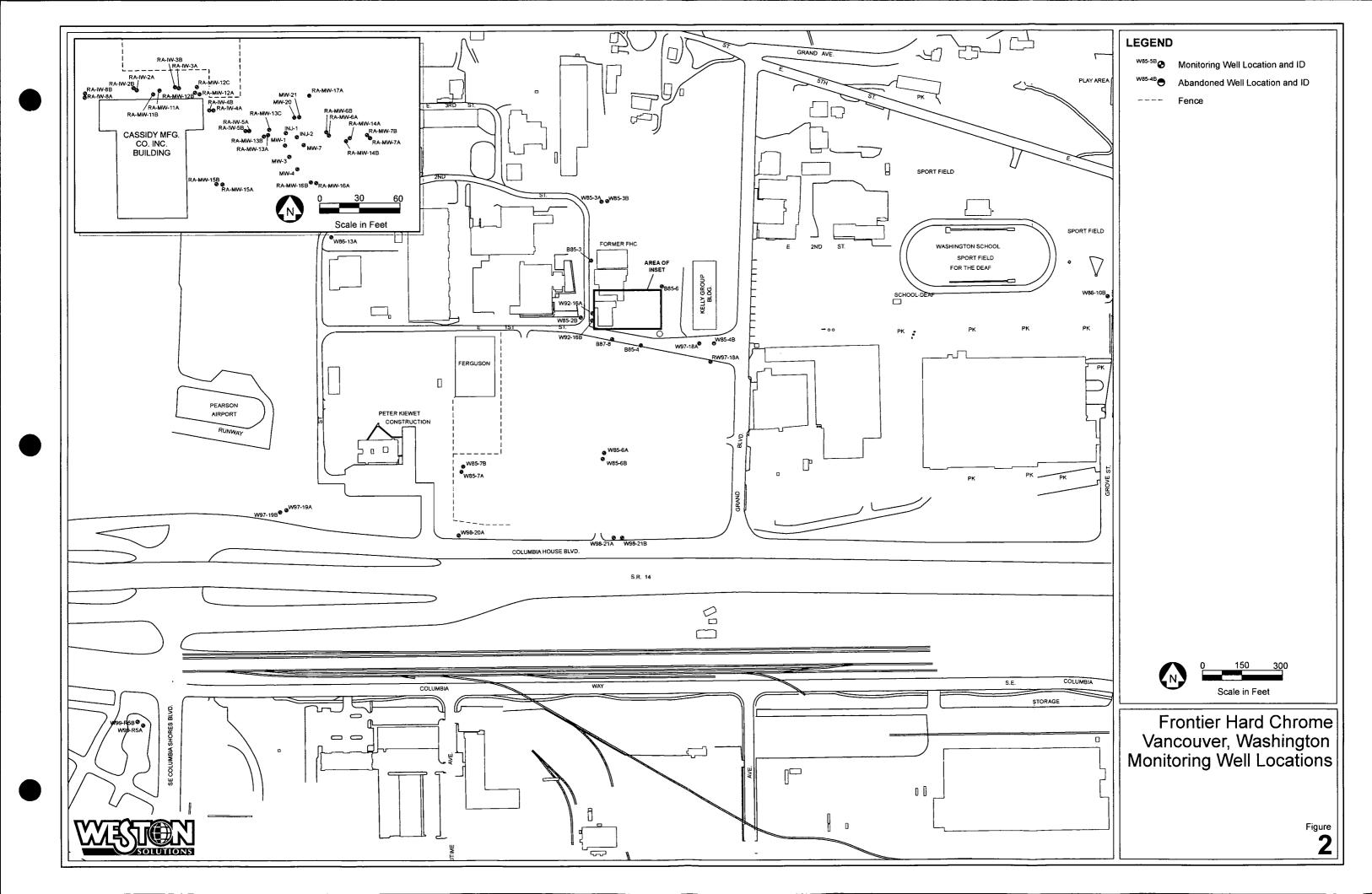

Data validation documentation is provided in Appendix D.

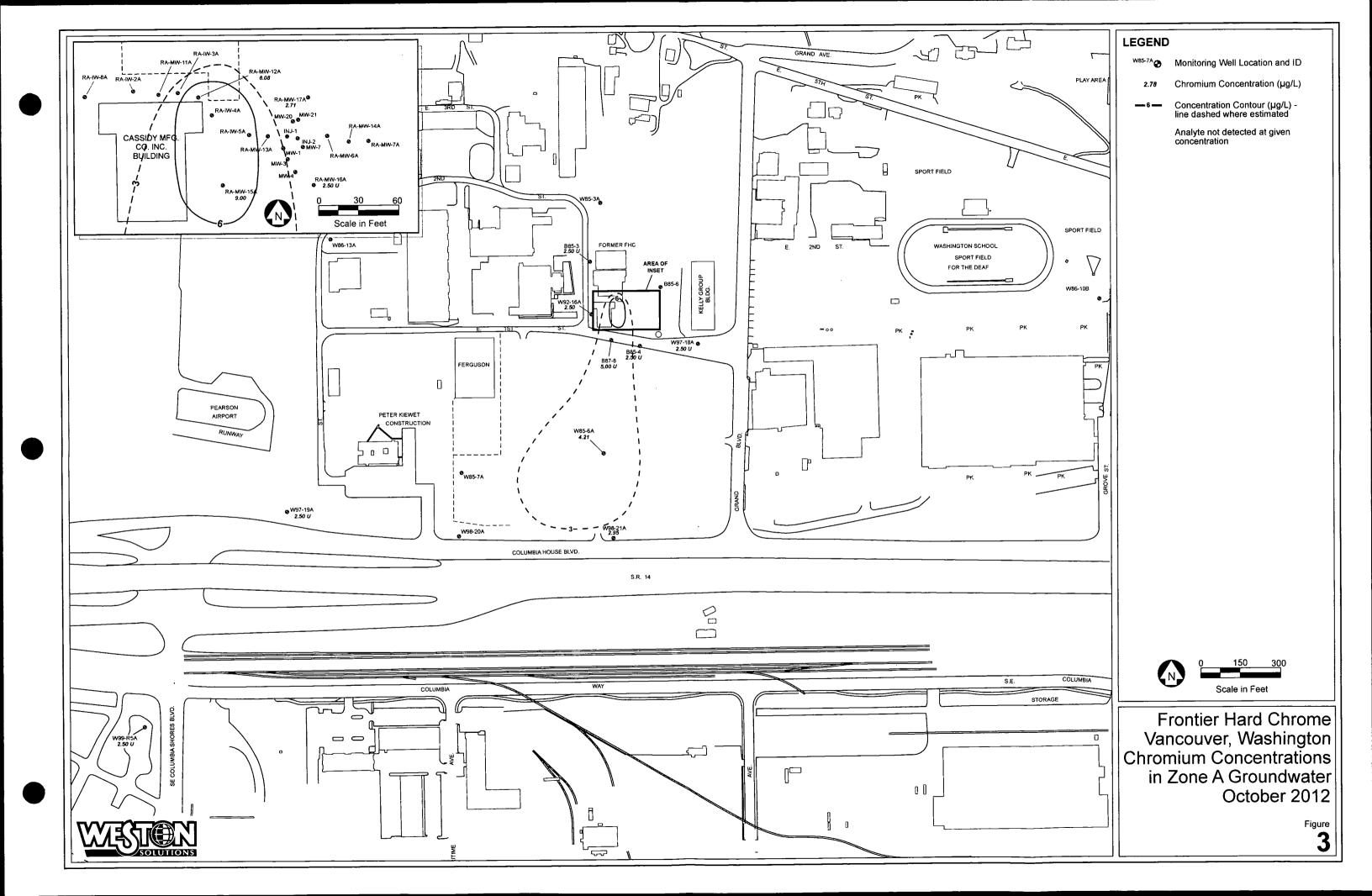

4. REFERENCES

EPA (United States Environmental Protection Agency), 2008. Five Year Review Report for Frontier Hard Chrome Superfund Site. January, 2008.

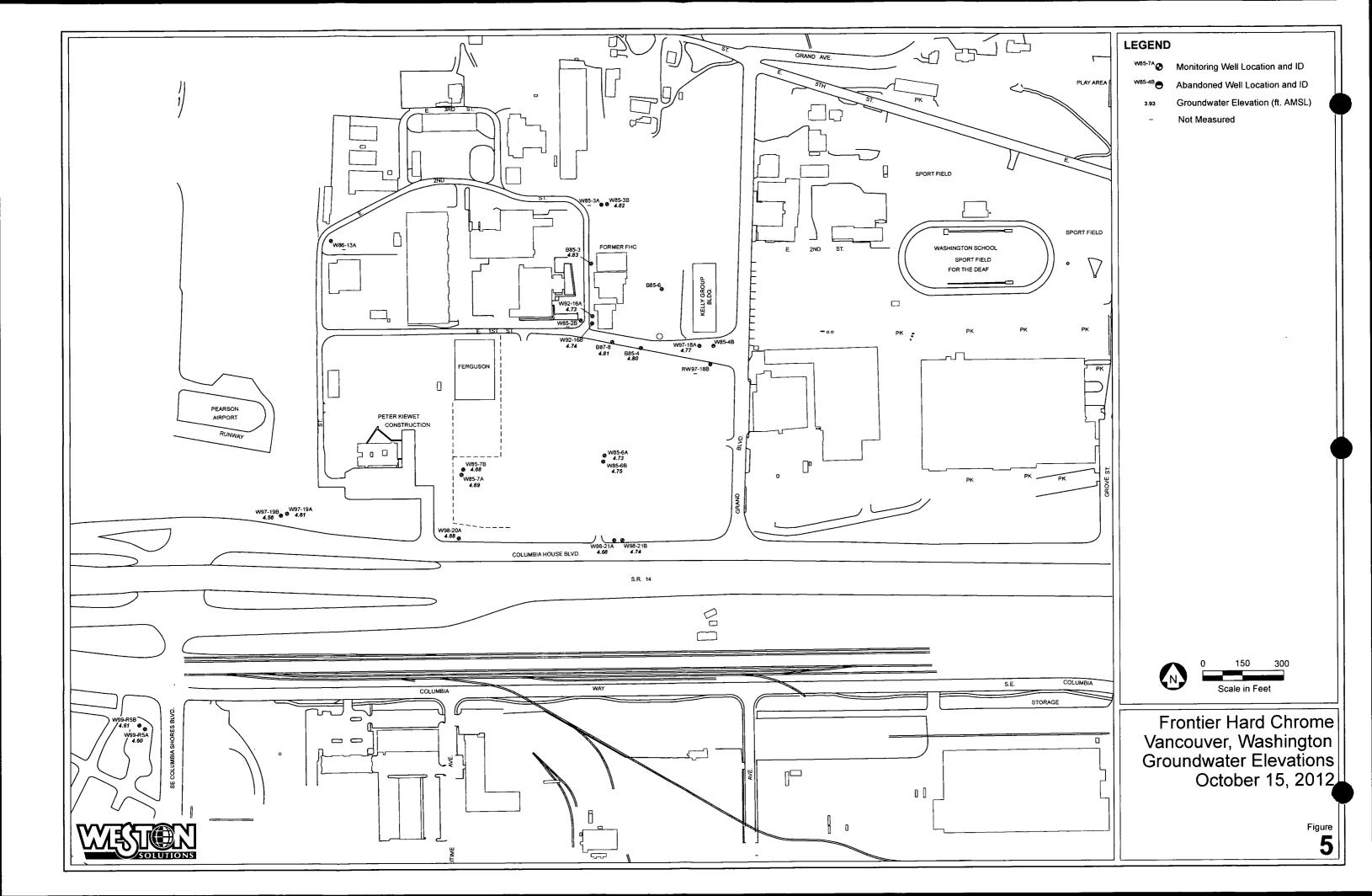
Weston (Weston Solutions, Inc.), 2004. Frontier Hard Chrome Long-Term Monitoring Plan. Prepared for the United States Environmental Protection Agency, Region 10, Seattle, Washington. February. 2004.

FIGURES





Frontier Hard Chrome Vancouver, Washington Vicinity Map


Figure

1

TABLES

Table 1: Frontier Hard Chrome - Event 18 Chromium Results

	Concentra	ıtion (μg/L)	
Well Number ¹	Total	Dissolved	Sample Observations
B85-3	2.50 U		Clear; no significant odor or sheen
B85-4	2.50 U	_	Clear; no significant odor or sheen
B87-8	6.86	5.00 U	Clear; no sheen; slight sulfur odor
RA-MW-12A	61.9	6.08	Clear; no sheen; strong sulfur odor
RA-MW-12B	2.50 U	_	Clear; no sheen; moderate sulfur odor
RA-MW-12C	2.50 U		Clear; no significant odor or sheen
RA-MW-15A	9.00	_	Clear; no significant odor or sheen
RA-MW-15B	2.50 U	5.00 U	Clear; no significant odor or sheen
RA-MW-16A	2.50 U	_	Clear; no significant odor or sheen
RA-MW-16B	3.03		Clear; no significant odor or sheen
RA-MW-17A	2.71	_	Clear; no significant odor or sheen
W85-6A	4.21	_	Clear; no significant odor or sheen
W85-6B	2.50	_	Clear; no significant odor or sheen
W92-16A	2.50	_	Clear; no significant odor or sheen
W92-16B	3.03		Clear; no significant odor or sheen
W97-18A	2.50 U	_	Clear; no significant odor or sheen
W97-19A	2.50 U	_	Clear; no significant odor or sheen
W97-19B	2.50 U	_	Clear; no significant odor or sheen
W98-21A	2.95	_	Clear; no significant odor or sheen
W98-21B	2.50 U	_	Clear; no significant odor or sheen
W99-R5A	2.50 U	_	Clear; no significant odor or sheen
W99-R5B	2.50 U		Clear; no significant odor or sheen

 [–] Not Analyzed
 U = analyte not detected above laboratory reporting limit

μg/L = micrograms per liter
1 = Only the 22 wells that were proposed to be sampled during Event 17 are included.

Table 2: Frontier Hard Chrome - Event 18 Monitoring Field Parameters¹

Well Number ²	Temp (°C)	Specific Cond. (mS/cm)	DO (mg/L)	рН	ORP (mV)	Dissolved Sulfur ³ (mg/L)	Sulfate ³ (mg/L)	Turbidity (NTU)
B85-3	12.54	0.875	0.28	6.82	-58.1	_		0.44
B85-4	13.19	0.416	0.38	6.77	119.1	20	54.9	0.21
B87-8	13.29	0.394	0.42	6.79	-16.5	22	62.5	7.47
RA-MW-12A	14.06	2.271	2.88	7.50	-278.0	_	_	12.10
RA-MW-12B	13.45	0.855	0.20	7.40	-214.3			0.79
RA-MW-12C	13.23	0.557	0.49	7.78	-178.2	_	_	0.30
RA-MW-15A	13.14	1.108	0.42	6.53	2.6	_	_	0.18
RA-MW-15B	13.23	0.388	0.19	7.23	67.0	_	_	0.31
RA-MW-16A	13.33	0.919	0.43	6.54	67.2	_	_	0.63
RA-MW-16B	13.41	0.781	0.17	6.83	110.4	_	_	0.18
RA-MW-17A	13.04	1.052	0.37	6.52	-35.4	_	_	0.64
W85-6A	14.26	0.249	5.07	6.54	101.8	7.9	22.2	0.14
W85-6B	14.20	0.217	10.86	7.65	107.0	_		0.24
W92-16A	13.88	0.343	0.24	6.60	111.3	_	_	1.33
W92-16B	13.43	0.271	9.27	6.93	134.2	_	_	0.52
W97-18A	13.75	0.173	1.00	6.25	150.4	_		0.37
W97-19A	14.11	0.249	2.85	6.55	111.8		_	0.27
W97-19B	14.01	0.255	2.80	6.70	126.0	_	_	0.37
W98-21A	14.13	0.253	4.53	6.34	154.7		_	0.23
W98-21B	13.69	0.274	4.92	6.49	155.8	_		0.16
W99-R5A	14.08	0.246	4.38	6.40	140.4	5.1	14.6	0.23
W99-R5B	13.94	0.250	4.86	6.64	141.1	_	_	0.19

= Not Analyzed

mg/L = milligrams per liter mV = millivolts mg/L

NTU = nephelometric turbidity unit mS/cm = milliSiemens per centimeter

1 = Parameters recorded after measurements stabilized
2 = Only the 22 wells that were sampled during Event 18 are included 3 = Sulfate and Dissolved Sulfur data obtained from laboratory analysis

Table 3: Comparison of Conventional Parameters

									Tempera	ture (°C)								
Well Number	Feb-04	Apr-04	Aug-04	May-05	Dec-05	Mar-06	Jun-06	Sep-06	Dec-06	Mar-07	Jun-07	Sep-07	Dec-07	Sep-08	Sep-09	Sep-10	Sep-11	Oct-12
B85-3	14.6	14.8	15.2	15.8	14.4	14.1	13.6	14.6	12.4	12.5	13.6	13.7	13.1	8.0	14.0	13.2	14.0	12.5
B85-4	14.1	14.4	15.1	14.4	13.9	13.5	14.3	14.5	13.8	14.6	14.4	-	13.5	8.7	14.7	17.0	14.9	13.2
B87-8	14.5	14.7	15.8	15.2	14.7	14.4	14.5	14.4	13.8	14,4	14.3	14.5	13.6	8.8	14.3	13.7	14.6	13.3
RA-MW-12A	14.9	15.9	17.9	15.2	14.9	14.6	14.3	14.9	13.9	14.0	13.9	14.4	13.8	8.7	15.5	13.5	14.5	14.1
RA-MW-12B	14.4	16.6	16.7	15.6	14.3	14.9	14.4	14.5	13,4	14.3	14.1	14.4	13.3	8.5	14.2	13.7	14.0	13.5
RA-MW-12C	14.4	16.5	16.6	15.1	14.2	14.3	14.2	14.2	13,1	13.3	14.1	14.1	13.2	8.5	14.4	13.2	14.5	13.2
RA-MW-15A	14.3	14.5	15.0	15.0	14.7	14.8	14.7	15.1	14.7	15.3	15.1	14.7	13.6	9.0	14.6	14.1	14.3	13.1
RA-MW-15B	13.9	14,4	15.4	14.7	14.1	14.0	14.5	17.2	14.1	14.8	14.9	14.3	13.4	8.8	14.6	14.0	14.3	13.2
RA-MW-16A	14.3	14.9	16.0	14.9	15.1	13.3	13.4	14.8	13.8	14.0	13.9	14.1	_	8.6	14.2	13.8	14.2	13.3
RA-MW-16B	14.3	14.6	16.0	14.7	13.9	13.7	13.8	15.2	13.4	14.3	13.8	14.1		8.8	14.4	14.0	14.1	13.4
RA-MW-17A	14.3	15.3	16.7	15.1	14.5	13.7		13.9	13.4	13.1	14.1	13.8	13.4	8.5	13.7	13.8	13,8	13.0
W85-6A	[4.1	14.1	15.5	14.0		_	13.7	15.3	13.9	13.2	13.6	14.1	13.2	8.7	15.7	14.4	15.2	14.3
W85-6B	13.6	13.8	16.3	13.7	_	_	13.8	15.1	13.1	13.1	13.8	15.0	12.9	8.6	16.6	14.5	15.0	14.2
W92-16A	14.2	15.6	16,1	15.3	14.0	13.8	14.1	15.5	13.6	13.3	14.5	14.5	13.3	8.6	14.8	14.3	15.1	13.9
W92-16B	14.1	14.7	16.2	15.2	13,7	13.7	13.8	15.4	13.1	13.3	14.4	14.6	13.0	8.7	14.6	14.0	15.0	13.4
W97-18A	11.3	11.0	15.0	12.7	13.9	12.0		13.8	13.0	11.6	12.5	13.2	13.0	7.8	13.7	13.6	14.5	13.8
W97-19A	12.5	13.3	16.0	14.3	13.8	12.9	-	15.3	13.9	13.8	14.1	14.3	13.3	8.7	14.9	14.3	14.9	14.1
W97-19B	12.7	13.3	15.9	15.3	13.3	12.4		15.2	13.0	14.2	14.4	14.5	12.9	8.8	14.1	14.2	15.0	14.0
W98-21A	13.1	14.3	14.2	13.8	13.9	13.8	13.7	15.0	13.7	13.7	14.0	14.5	12.3	8.4	17.1	14.1	14.5	14.1
W98-21B	13.1	13.6	14.0	13.8	13.7	13.0	13.7	14.7	13.4	13.5	14.2	14.5	13.2	8.5	16.7	13.8	14.7	13.7
W99-R5A	14.2	14.9	15.7	14.8	14.8	14.7	15.1		13,9	13.9	15.5	15.4	14.1	10.0	14.7	14.3	14.8	14. l
W99-R5B	13.9	14.4	15.6	14.4	14.5	13.9	14.7	-	13.5	13.5	15.0	15.2	13.6	9.5	15.1	14.2	14.4	13.9
RA-MW-11A	15.7	16.5	17.4	15.7	15.0	15.1	15.1	14.9	13.7	13.8	14.0	14.0	13,5	_	_	_		_
RA-MW-11B	14.9	16.3	17.0	15.6	14.9	14.7	14.7	14.7	13.4	13.6	14.1	14.3	13.2	_	-		_	_
RA-MW-13A	15.0	14.6	15.7	14.9	14.5	14.3	13.7	14.1	12.8	13.8	14,3	14.3	13.2		_	-	_	
RA-MW-13B	14.8	14.7	15,4	14.9	14.2	14.3	14.1	14.2	13.0	13.9	14.2	13.8	13.2		_		_	_
RA-MW-13C	14.2	15.0	14.9	14.5	14.3	13.8	13.8	14.1	12.4	13.9	14.0	14.0	12.9			_		
RA-MW-14A	13.9	14.3	15.3	14.6	14.7	10.8		13.6	12.7	10.8	13.0	13.2	12.9					
RA-MW-14B	14.0	14.9	15.5	14.5	14.1	12.3		14.0	12.8	11.3	13.8	13.5	12.9	_	_			
W85-7A	11.4	12.6	14.9	13.9	14.5	12.3	13.7	15.9	13.4	12.7	13.4	_	14.5			_		_
W85-7B	12.1	13.0	14.5	13.6	14.1	12.8	13.4	14.4	13.0	13.0	13.4	_	13.4	_		_	_	_
W97-18B	11.4	12.4	14.4	13.5	13.0	10.7		13.8	12.6	12.0	13.6	_	_	-		_		
W98-20A	13.8	12.5	15.4	14.3	14.3	13.1		15.3	14.0	13.1	13.6		13.2	_				

		·····	سورين والمتالية والمتالية					Spec	ific Condu	etivity (mS	S/cm)							}
Well Number	Feb-04	Apr-04	Aug-04	May-05	Dec-05	Mar-06	Jun-06	Sep-06	Dec-06	Mar-07	Jun-07	Sep-07	Dec-07	Sep-08	Sep-09	Sep-10	Sep-11	Oct-12
B85-3	0.99	0.90	0.98	0.81	0.54	0.74	0.64	0.72	0.97	0.84	0.68	0.77	0.90	0.81	0.77	0.72	0.65	0.88
B85-4	0.41	1.17	0.51	0.71	0.28	0.74	0.33	0.56	0.92	739.00	0.60	_	0.43	0.63	0.58	0.55	0.34	0.42
B87-8	0.26	0.55	0.36	0.29	0,24	0.38	0.27	0.36	0.44	0.39	0.19	0.33	0.36	0.27	0.32	0.45	0.31	0.39
RA-MW-12A	6.01	5.40	4.00	3.32	2.52	2,47	2.37	2.26	2.95	0.85	1.11	1.98	2.34	2.55	2.92	2.59	2.55	2.27
RA-MW-12B	2.25	1.19	1.52	2.56	2.47	1.34	1.39	1.19	2.12	1.12	0.89	1.55	1.49	1.55	1.74	1.11	0.78	0.86
RA-MW-12C	2.18	1.34	1.13	0.68	1.09	0.69	0.88	0.53	1.05	0.65	0.49	0.58	0.81	0.80	0.97	0.72	0.54	0.56
RA-MW-15A	1.88	1.04	1.08	1.30	1.42	1.53	1.44	1.27	1.74	1.10	1.06	1.06	1.28	1.03	1.04	0.99	0.89	1.11
RA-MW-15B	0.47	0.86	0.68	0.64	0.91	0.92	0.80	0.46	1.60	1.16	0.49	0.81	1.22	0.93	0.85	0.49	0.33	0.39
RA-MW-16A	2.95	1.46	2.00	1.70	1.07	1.04	1.01	0.80	1.13	1.02	0.83	0.91	_	0.93	1.04	0.89	0.83	0.92
RA-MW-16B	2.42	1,19	1.40	1.81	0.92	0.67	0.51	0.43	1.34	1.05	0.32	0.48	_	0.74	0.66	0.49	0.50	0.78
RA-MW-17A	1.80	1.80	1.80	1.39	1.18	1.30	_	1.18	1.30	1.04	1.03	1,16	1.47	1,46	1.43	1.23	0.96	1.05
W85-6A	0.11	0.33	0.34	299.00	_	_	0.23	0.24	0.24	0.36	0.27	0.32	0.30	0.27	0.24	0.26	0.22	0.25
W85-6B	0.31	0.41	0.33	0.26		_	0.10	0.11	0.17	0.24	0.19	0.20	0.26	0.32	0.22	0.19	0.18	0.22
W92-16A	0.33	0.25	0.27	0.23	0.24	0.28	0.28	0.37	0.47	0.57	0.47	0.53	0.64	0.61	0.48	0.36	0.36	0.34
W92-16B	1,17	1.37	0.95	0.66	0.09	0.34	0.42	0.32	0.61	0.57	0.25	0.44	0.60	0.50	0.15	0.21	0.27	0.27
W97-18A	0.11	0.09	0.11	0.08	0.10	0.19		0.15	0.16	0.16	0.10	0.14	0.18	0.23	0.21	0.19	0.16	0.17
W97-19A	0.25	0.26	0.28	0.23	0.23	0.19	_	0,21	0.26	0.24	0.19	0.22	0.26	0.30	0.30	0.26	0.24	0.25
W97-19B	0.26	0.26	0.29	0.22	0.06	0.19	_	0.20	0.28	0.23	0.19	0.21	0.25	0.30	0.09	0.26	0.24	0.26
W98-21A	0.16	0.23	0.29	0.45	0.19	0.19	0.22	0.25	0.29	0.29	0.27	0.27	0.09	0.29	0.30	0.28	0.22	0.25
W98-21B	0.24	0.27	0.27	0.25	0.18	0.22	0.21	0.24	0.32	0.31	0.21	0.26	0.27	0.29	0.26	0.30	0.20	0.27
W99-R5A	0.24	0.25	0.24	0.22	0.21	0.20	0.20		0.27	0.22	0.21	0.21	0.20	0.27	0.28	0.26	0.22	0.25
W99-R5B	0.26	0.26	0.27	0.23	0.22	0.22	0.22		0.28	0.24	0.21	0.22	0.26	0.29	0.27	0.25	0.23	0.25
RA-MW-11A	1.67	1.89	2.02	1.48	1.82	2.01	1.46	1.70	2.21	1.75	1.22	1.62	1.99	_	_	_	_	
RA-MW-11B	1.49	2.08	2.02	1.72	2.25	1.17	0.94	1.10	1.50	1.21	0.77	1.05	1.59	_		_		_
RA-MW-13A	5.21	2.42	3.29	2.83	2.49	2.17	1.66	1,13	2.33	1.34	1.23	1.47	1.69		_	_		-
RA-MW-13B	3.73	1.38	2.15	2.41	2.16	0.81	0.82	0.50	2.22	1.23	0.50	0.98	1.34	-	-	_	_	
RA-MW-13C	3.07	1.82	1.41	1.28	0.71	0.79	0.82	0.57	1.36	0.93	0.51	0.60	0.93		_	_	_	_
RA-MW-14A	1.43	1.71	1.96	1.08	0.88	0.87	_	0.92	0.77	0.87	0.74	0.89	0.95	_	_	_	_	_
RA-MW-14B	1.56	1.21	0.98	1.08	1.00	0.78	_	0.69	0.89	0.87	0.68	0.85	1.02	_			_	_
W85-7A	0.13	0.14	0.21	0.12	0,11	0.10	0.16	0.16	0.13	219.00	0.11	_	0.27	_			_	_
W85-7B	0.28	0.31	0.32	0.01	0.01	0.01	0.02	0.01	0.03	0.01	0.02	_	0.02	_			_	_
W97-18B	0.26	0.24	0.27	0.22	0.19	0.19	-	0.19	0.28	0.23	0.17		-	_			_	_
W98-20A	0.16	0.15	0.23	0.12	0.12	0.13		0.18	0.25	0.18	0.16	_	0.26	_			_	

								Di	ssolved Ox	ygen (mg/	'L)						***************************************	
Well Number	Feb-04	Apr-04	Aug-04	May-05	Dec-05	Mar-06	Jun-06	Sep-06	Dec-06	Mar-07	Jun-07	Sep-07	Dec-07	Sep-08	Sep-09	Sep-10	Sep-11	Oct-12
B85-3	1.11	0.16	1.57	4.50	0.12	2.97	0.22	1.04	0.80	0.02	0.24	0.15	0.21	0.18	0.39	0.27	0.62	0.28
B85-4	0.65	1.37	1.50	0.33	0,20	0.22	0.52	1.61	0.30	0.03	0.27		0.24	0.26	0.40	0.34	0.55	0.38
B87-8	0.13	1.03	1,06	0.35	0.28	0.53	0.37	0.52	0.25	0.01	7.00	0.19	0.11	0.24	0.40	0.17	0.62	0.42
RA-MW-12A	0.24	0.09	0.20	0.13	0.04	0.00	52.70	17.00	56.41	0.00	0.00	-0.47	0.00	0.00	0.51	1.96	1.28	2.88
RA-MW-12B	0.27	0.07	0.27	0.07	0.05	1.26	45.10	12.16	73.22	0.00	9.82	-0.39	0.00	0.00	0.40	0.23	0.27	0.20
RA-MW-12C	0.20	0.14	0.42	0.25	0.07	1.10	5.16	4.93	3.33	0.01	0.40	0.23	0.00	0.28	0.53	0.20	0.18	0.49
RA-MW-15A	0.33	0,21	1.53	0.47	0.15	8.34	0.47	2.89	0.29	0.04	0.19	0.48	0.10	0.32	0.48	0.32	0.56	0.42
RA-MW-15B	0.22	0.10	0.74	0.44	0.18	0.79	0.30	1.25	0.30	0.06	0.15	0.18	0.12	0.30	0.60	0.26	0.54	0.19
RA-MW-16A	0.73	0,27	1.39	1.60	0.11	5.40	0.54	0.49	0.31	0.05	0.36	0.31	_	0.15	0.43	0.31	0.65	0.43
RA-MW-16B	0.75	0.15	0.86	0.75	0.33	1.85	0.27	0.27	0.21	0.05	0.24	0.16	_	0.19	0.33	0.25	0.36	0.17
RA-MW-17A	0.60	0.19	1.99	0.60	0.20	3.69		0.74	0.35	0.11	0.14	0.22	0.10	0.19	0.51	0.32	0.45	0.37
W85-6A	4.92	0.43	0.85	4.90		_	1.86	2.06	2.63	0.09	0.51	0.93	2.52	2.08	4.01	2.97	3.51	5.07
W85-6B	3.46	6.13	6.54	5.50	<u> </u>	_	7.87	3.83	5.15	0.05	4.96	5.95	6.10	4.87	13.98	10.48	9.20	10.86
W92-16A	0.98	0.13	2.49	3.10	0.28	0.15	0.45	0.32	0.33	0.13	0.32	0.22	0.11	0.15	0.54	0.28	0.48	0.24
W92-16B	0.14	0.53	1.97	3.40	5.40	1.02	0.54	2.12	0.23	0.80	4.16	1.60	0.11	1.31	14.02	10.90	8.21	9.27
W97-18A	1.27	0.74	1.09	0.50	1.10	4.00	_	1.45	0.90	0.90	0.67	0.69	0.69	0.64	0.33	0.19	0.66	1.00
W97-19A	4.72	1.79	22.73	4.60	0.97	3.51	_	3.50	9.37	1.00	3.74	3.57	4.69	3.92	6.56	2.42	3.67	2.85
W97-19B	1.81	1.31	2,60	2.60	1.10	2.99		3.43	4.13	0.52	2.83	3.55	3.44	3.01	9.81	1.67	4.06	2.80
W98-21A	1.29	1.49	3.03	13.30	1.20	1.05	3.26	2.59	4.97	0.07	0.80	2.44	2.53	2.58	3.18	2.81	3.52	4.53
W98-21B	1.24	3.29	2.82	17.70	3.90	1.08	3.37	2.42	4.90	0.02	3.52	1,98	2.73	2.58	8.21	2.60	7.13	4.92
W99-R5A	4.72	4.26	5.60	5.30	3.30	1.83	5.10		6.26	4.90	4.53	4.55	5.38	5.40	6.33	5.10	5.13	4.38
W99-R5B	3.97	2.71	4.70	5.10	1.90	2.03	4.20	_	4.90	3.40	3.49	3.86	4.66	4.34	5.76	5.03	4.55	4.86
RA-MW-11A	0.32	0,10	0.66	6.69	0.16	0.00	24.20	22.50	1.80	0.00	0.13	-0.12	0.00					-
RA-MW-11B	0.19	0.15	0.50	0.14	0.10	0.19	26.60	4.44	2.50	0.00	0.81	0.15	0.00	_	_	_	_	
RA-MW-13A	1.63	0.17	1.13	0.53	0.11	0.38	0.27	1.00	0.00	0.04	0.24	0.20	0.11			_	_	
RA-MW-13B	0.73	0.16	0.73	0.51	0.21	0.45	0.35	0.49	0.00	0.09	0.14	0.51	0.09	_	_		_	_
RA-MW-13C	0.22	0.15	0.43	1.40	2.98	0.96	0.41	0.80	0.00	0.06	0.46	0.26	0.07	_				
RA-MW-14A	0.89	0.22	5.96	0.51	0.22	6.74	_	0.88	1.75	0.60	0.21	0.17	0.11	-			_	
RA-MW-14B	1.08	0.10	2.77	0.42	0.12	2.58		0.52	1.73	0.90	0.13	0.20	0.10	_	_	_		
W85-7A	4.05	3.17	2.18	4.30	2.20	6.70	5.89	3.09	2.39	0.18	3.29		2.60					
W85-7B	2.78	5.11	6.10	8.70	4.00	10.30	10.96	3.77	0.06	0.10	8.79		7.85	_			_	
W97-18B	2.01	5.56	4.52	4.90	2.00	1.17		4.25	4.59	1.09	4.72			_				_
W98-20A	4.92	3.76	5.50	5.00	3.20	5.10	_	3.63	9.14	5.70	3.03	_	4.87		_			

		******		· · · · · ·					p	H							#.WK.E.	
Well Number	Feb-04	Apr-04	Aug-04	May-05	Dec-05	Mar-06	Jun-06	Sep-06	Dec-06	Mar-07	Jun-07	Sep-07	Dec-07	Sep-08	Sep-09	Sep-10	Sep-11	Oct-12
B85-3	6.49	6.68	6.91	6.39	6.70	6.64	6.42	6.33	6.73	6.68	6.66	6.88	7.02	6.88	6.74	6.85	5.82	6.82
B85-4	6.14	6.26	6.53	6.22	6.51	6.49	6.21	6.28	6.47	6.53	6.53	_	7.21	6.62	6.28	6.41	5.20	6.77
B87-8	6.55	6.31	6.73	6.54	6.68	6.57	6.35	6.61	6.71	6.71	6.89	6.99	7,44	6.90	6.90	6.63	6.14	6.79
RA-MW-12A	8.86	8.73	8.86	8.98	8.41	8.19	8,46	8.54	7.59	7.86	7.97	7.97	8.53	7.16	7.64	7,79	6.58	7.50
RA-MW-12B	7.77	7.83	7.92	8.30	8.68	8.16	7.76	7.83	8.06	7.94	7.55	7.79	8.28	7.75	7.25	7.31	6.43	7.40
RA-MW-12C	8.13	7.92	8.09	7.95	8.14	7.89	7.92	7.90	7.74	7.80	7.79	8,14	8.57	7.99	7.81	7.70	6.68	7.78
RA-MW-15A	6.35	6.37	6.74	6.20	6.30	6.47	6.28	6.09	6.53	6.61	6.50	6.68	7,19	6.63	6.53	6.51	5.80	6.53
RA-MW-15B	6.35	6.83	7.18	6.39	6.39	6.51	6.26	6.61	6.39	6.48	6.84	6.73	7.18	6.66	6.52	7.01	6.33	7.23
RA-MW-16A	6.61	6.61	6.75	6.42	6.44	6.62	6.44	5.96	6.68	6.71	6.64	6.82	_	6.74	6.62	6.56	4.35	6.54
RA-MW-16B	6.42	7.12	7.09	6.31	7.12	7.06	6.85	6.09	6.62	6.78	7.27	7.41	_	7.11	7.18	7.28	5.43	6.83
RA-MW-17A	6.55	6.43	6.61	6.20	6.39	6.50		6.42	6.66	6.59	6.47	6.69	7.26	6.65	6,68	6.55	5.57	6.52
W85-6A	6.23	6.22	6.40	6.36	_	-	6.25	5.47	6.63	6.47	6.50	6.77	6.85	6.71	6.24	6.52	6.07	6.54
W85-6B	6.40	6.42	6.68	6.62		_	8.93	7.16	8.05	6.83	6.76	7.15	7.09	6.87	8.50	9.12	7.80	7.65
W92-16A	6.42	6,42	6.72	6.60	6.56	6.60	6.67	5.87	6.59	6.52	6.44	6.75	7.41	6.61	6.40	6.56	5.47	6.60
W92-16B	7.51	7.58	7.63	7.59	6.88	7.54	7.38	6.35	7.46	7.62	7.51	7.70	8.23	7.21	7.22	7.17	5.93	6.93
W97-18A	5.83	5.96	6.19	6.17	6.78	6.57		5.08	6.29	6.32	6.23	6.54	7.07	6.33	6.33	6.30	5.20	6.25
W97-19A	6.35	6.24	6.28	6.35	6.59	6.41	_	5.53	6.55	6.58	6.57	6.91	7.33	6.51	6.35	6.53	3.30	6.55
W97-19B	6.68	6.49	6.30	6,47	6.68	6,68	_	5.89	6.83	6.76	6.72	6.95	7.50	6.65	7.14	6.78	4.94	6.70
W98-21A	5.92	6.07	6.68	6.18	6.30	6.25	6.11	4.80	6.16	6.43	6.34	6.53	6.81	6.48	6.07	6.25	5.62	6.34
W98-21B	6.04	6.07	6.90	6.24	6.64	6.36	6.07	5.55	6.38	6.39	6.46	6.48	7.08	6.44	6.19	6.38	5.34	6.49
W99-R5A	6.03	5.98	6.28	6.21	6.22	6.28	6,23		6.40	6.30	6.18	6.58	6.73	6.31	6.52	6.35	5,60	6.40
W99-R5B	6.20	6.23	6.55	6.33	6.63	6.55	6.26	_	6.62	6.63	6.54	6.90	6.92	6.54	6.66	6.67	5.95	6.64
RA-MW-11A	7.51	7.53	7.00	6.52	6.64	6.64	6.46	6.48	6.43	6.69	6.68	6.86	7.26	_		_	_	
RA-MW-11B	7.66	7.90	7.20	6.70	6.73	7.00	6.69	6.85	6.86	7.01	6.94	7.17	7.61			-	_	
RA-MW-13A	7.15	7.15	7.03	6.70	6.86	6.82	6.82	6.96	7.02	7.08	6.95	7.11	7.21	-		_	_	_
RA-MW-13B	7.23	7.56	7.30	6.86	6.99	7.15	6.95	7.52	7.04	7.06	7.43	7.35	7,27		_	_		_
RA-MW-13C	7.36	7.35	7.44	7.33	7.48	7.25	7.25	7.45	7.45	7.44	7.53	7.81	7.62		_	_		_
RA-MW-14A	6.64	6.81	6.99	6.50	6.60	6.60	_	5.98	6.76	6.65	6.62	6.89	6.85	_	_		_	_
RA-MW-14B	6.90	7.14	7.33	6.75	6.78	6.87		6.40	6.98	6.82	6.89	7.06	7.04		_		-	_
W85-7A	6.24	6.04	6.26	6.20	6.30	6.35	6.24	5.69	6.45	6.33	6.40	_	6.61	_	_	_	_	
W85-7B	6.63	6.51	6.71	5.91	6.18	6.14	6.37	5.39	6.57	6.23	6.30	_	6.71	_	_	_	_	_
W97-18B	6.57	6.35	6.67	6.41	6.60	6.16		6.25	6.55	6.61	6.68	_	-	_		-	_	_
W98-20A	6.01	5.91	6.32	5.97	6.29	6.18	_	4.90	6.26	6.41	6.19	_	7.02	_		_	_	

								· <u></u>	ORP	(mV)								
Well Number	Feb-04	Apr-04	Aug-04	May-05	Dec-05	Mar-06	Jun-06	Sep-06	Dec-06	Mar-07	Jun-07	Sep-07	Dec-07	Sep-08	Sep-09	Sep-10	Sep-11	Oct-12
B85-3	-7	-107	-37	-47	-93	-62	-43	-53	-59	-43	-66	-30	-52	-39	27	-61	-50	-58
B85-4	10	41	59	218	-26	75	86	179	161	182	90	_	123	108	162	220	479	119
B87-8	-8	31	17	199	2	73	86	160	167	170	87	95	106	96	107	12	42	-17
RA-MW-12A	-468	-466	-430	-417	-403	-393	-363	-311	-373	-324	-374	-369	-396	-310	-154	-304	-333	-278
RA-MW-12B	-363	-321	-315	-415	-414	-345	-327	-355	-374	-313	-363	-361	-379	-318	-215	-283	-308	-214
RA-MW-12C	-282	-179	-154	-239	-314	-234	-191	-164	-217	-137	-129	-235	-289	-219	-167	-233	-275	-178
RA-MW-15A	-47	4	39	10	-12	-137	-28	-52	-24	13	-58	41	7	47	93	50	68	3
RA-MW-15B	-5	28	15	17	-11	16	34	76	32	48	-15	64	29	82	122	75	407	67
RA-MW-16A	-94	-45	-58	-156	-103	-160	-93	-125	-125	-112	-109	-21		-30	120	96	315	67
RA-MW-16B	-57	-70	-60	-85	-130	-131	-66	-155	-113	-88	-112	-43		-46	29	21	490	110
RA-MW-17A	-91	-40	-7	-5	-27	-89	_	-106	-34	-128	-79	74	-25	-11	-6	-39	54	-35
W85-6A	17	57	86	163			107	356	123	172	168	240	176	218	200	144	328	102
W85-6B	19	76	72	159		_	79	340	70	164	161	236	177	229	165	117	357	107
W92-16A	1	-14	30	110	110	-32	61	129	127	76	100	98	112	113	154	118	413	111
W92-16B	-116	-61	-60	73	119	-103	30	253	113	71	60	116	114	121	152	151	459	134
W97-18A	32	57	67	103	58	137		317	192	119	135	133	130	147	60	140	505	150
W97-19A	71	94	72	218	69	149		311	96	71	156	233	128	205	127	155	609	112
W97-19B	56	86	56	52	76	142		295	88	74	153	240	121	193	138	163	562	126
W98-21A	28	69	79	182	113	160	114	484	157	-55	165	243	135	228	183	196	453	155
W98-21B	33	72	47	202	121	161	117	471	148	111	161	249	140	226	188	194	486	156
W99-R5A	58	96	97	153	123	197	116	_	131	100	81	237	186	226	134	174	403	140
W99-R5B	58	78	74	201	92	204	111		122	92	90	239	180	213	167	162	414	141
RA-MW-11A	-384	-391	-316	-110	-241	-246	-216	-294	-671	-260	-263	-258	-259	_	_			_
RA-MW-11B	-394	-393	-332	-296	-289	-301	-278	-317	-303	-261	-287	-276	-313		_			
RA-MW-13A	-155	-102	-97	-94	-204	-176	-93	-153	-121	-125	-144	-69	-101	_		-	_	
RA-MW-13B	-129	-123	-104	-105	-125	-197	-85	-152	-125	-144	-166	-79	-99		_			
RA-MW-13C	-136	-126	-116	-142	-33	-175	-112	-135	-137	-133	-143	-100	-140	_	_		_	_
RA-MW-14A	-77	-41	-54	-75	-82	-136	-	-80	-64	-104	-154	-25	-14			_		
RA-MW-14B	-112	-95	-102	-112	-134	-133		-98	-144	-141	-129	-57	-64	_	_			_
W85-7A	68	83	57	197	116	113	127	246	131	186	160		175			_		
W85-7B	59	73	66	215	132	146	167	259	141	187	161	_	189	_		_	_	
W97-18B	57	63	60	188	83	152	_	233	187	123	118					_		
W98-20A	52	116	84	219	116	171		366	143	91	166	_	153	_			<u> </u>	

Well Number						······································			Sulfur	(mg/L)		· · · · · · · · · · · · · · · · · · ·						
well Number	Feb-04	Apr-04	Aug-04	May-05	Dec-05	Mar-06	Jun-06	Sep-06	Dec-06	Mar-07	Jun-07	Sep-07	Dec-07	Sep-08	Sep-09	Sep-10	Sep-11	Oct-12
B85-4	23	150	31	87	20	103	21	59	67	59	75		23	39	32	33	13	20
B87-8	9	52	22	17	23	48	21	42	31	34	43	28	24	14	17	35	12	22
W85-6A	+	15	14	18	-		12	15	7	26	19	19	10	9	6	7	7	8
W98-21A			_		8	10	~		_		_	_		-	-	_	_	_
W99-R5A	5	6	4	5	6	7	6	5	5	5	5	5	6	6	6	5	5	5
RA-MW-11A	286	296	304	285	460	448	322	402	342	311	304	311	345	_	_	_	_	_
RA-MW-13A	743	246	324	372	363	310	213	111	207	107	130	148	122	_			-	
RA-MW-14A	189	228	214	136	122	158	124	140	72	107	117	113	103		_	_	_	_
W85-7A	3	4	5	4	4	3	5	6	3	10	4	_	7	_	_	_	_	-
									Sulfate	(mg/L)								
B85-4	58	410	104	222	50	253	75	169	212	201	195	_	60	107	95	97	38	55
B87-8	21	137	73	170	63	125	74	117	98	113	120	87	61	39	54	102	35	63
W85-6A	5	36	44	44			35	41	21	85	51	59	27	20	19	20	22	22
W98-21A			1	_	19	25	ı	_			_		_	-	_	_		_
W99-R5A	12	12	13	15	13	15	18	14	14	16	14	15	16	17	19	15	16	15
RA-MW-11A	620	751	1040	736	1200	3040	993	1170	1120	954	795	995	989	_	_	_	_	_
RA-MW-13A	1960	712	1056	985	971	1980	682	323	657	362	331	451	342	_	_		_	_
RA-MW-14A	477	635	697	357	351	429	396	400	225	358	283	347	284	_	-	_		
W85-7A	6	9	15	13	8	8	18	16	7	30	10	_	18	_	-		_	_
																		

= Not Analyzed = milligrams per liter = millivolts

mg/L mV = milliSiemens per centimeter

Table 4: Frontier Hard Chrome - Event 18 Ground Water Elevations - 15 October 2012

Well Number	Time	Casing Elevation (ft AMSL)	Depth to Water (ft)	Water level Elevation (ft AMSL)
W85-3A		26.40		
W85-3B	13:13	26.77	21.95	4.82
W97-18A ¹	13:39	24.66	19.89	4.77
B85-4 ¹	13:34	25.13	20.33	4.80
B87-8 ¹	13:29	25.79	20.98	4.81
W92-16B	13:19	25.51	20.77	4.74
W92-16A	13:17	25.62	20.89	4.73
B85-3 ¹	13:24	24.90	20.07	4.83
W85-7A ¹	12:43	26.22	21.53	4.69
W85-7B ¹	12:44	26.41	21.73	4.68
W97-19A ^{2.3}	12:24	22.45	17.84	4.61
W97-19B ^{2,3}	12:25	21.72	17.16	4.56
W98-20A ^{1,3}	12:36	26.62	21.74	4.88
W85-6A ¹	13:03	25.90	21.17	4.73
W85-6B ¹	13:04	25.85	21.10	4.75
W98-21B ¹	12:55	27.05	22.31	4.74
W98-21A ¹	12:53	26.79	22.11	4.68
W99-R5A	12:09	32,26	27.66	4.60
W99-R5B	12:11	32.33	27.72	4.61
USGS 14144700 ⁴	Daily Average for 10/15/2012			4.60

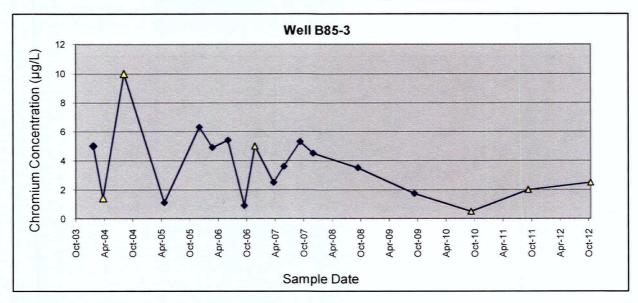
⁼ Casing elevation surveyed by Minister-Glaeser Surveying Inc. on November 30, 2007
= Two different elevation datum's have been used at Frontier Hard Chrome. Weston (12/03) Long-Term Monitoring plan has applied a correction factor (+3.76 feet) using the City of Vancouver's benchmark #108 located near FHC site.
= anomalous groundwater elevation measurement; not used in flow direction and gradient calculations
= Stage height of the Columbia River corrected to the NGVD 1929 (add 1.82 feet) for October 15, 2012
= Above Mean Sea Level
= feet
= United States Geological Survey.

United States Geological Survey
 Could not measure water level elevation due to well not having been located.

Table 5: Quality Assurance Sample Results

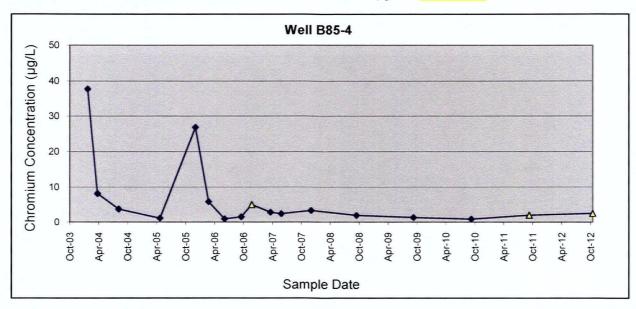
Well Number	Duplicate Sample ID	Original Sample Concentration	Duplicate Sample Concentration	Relative Percer Difference		
	Total C	Chromium (µg/L) (uni	filtered)			
B85-4	QA-2	2.50 U	2.50 U			
RA-MW-15B	QA-3	2.50 U	2.50 U	_		
RA-MW-12A	QA-4	61.9	73.3	16.9		
	Dissolved (Chromium (µg/L) (fie	eld filtered)			
RA-MW-15B	QA-3	5.00 U	5.00 U	_		
		Sulfate (mg/L)				
W85-6A	QA-1	22.2	22.1	0.5		

mg/L U


multigrams per liter
 analyte not detected above laboratory reporting limit
 micrograms per liter
 not calculable

μg/L

APPENDIX A GROUNDWATER CHROMIUM CONCENTRATION TRENDS

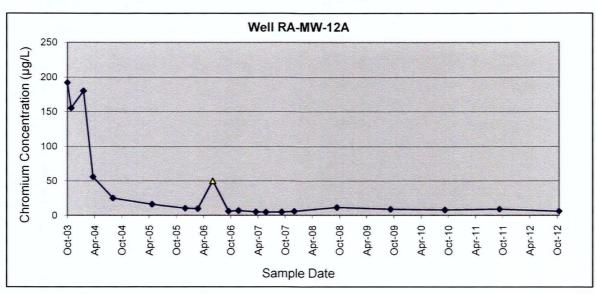

Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AH0	Water	05-Feb-04	Chromium	5	μg/L	J	B85-3	Total	1.00
MJ2BJ6	Water	07-Apr-04	Chromium	1.4	μg/L	U	B85-3	Total	3.00
MJ4732	Water	18-Aug-04	Chromium	10	μg/L	U	B85-3	Total	0.00
184232	Water	03-May-05	Chromium	1.1	μg/L		B85-3	Total	2.80
05504298	Water	13-Dec-05	Chromium	6.3	μg/L		B85-3	Total	8.10
104235	Water	06-Mar-06	Chromium	4.9	μg/L		B85-3	Total	7.00
244311	Water	14-Jun-06	Chromium	5.4	μg/L		B85-3	Total	6.00
394197	Water	26-Sep-06	Chromium	0.9	μg/L		B85-3	Total	1.00
494094	Water	03-Dec-06	Chromium	5	μg/L	U	B85-3	Total	7.00
134266	Water	01-Apr-07	Chromium	2.5	μg/L		B85-3	Total	5.10
234092	Water	06-Jun-07	Chromium	3.6	μg/L		B85-3	Total	4.00
384551	Water	18-Sep-07	Chromium	5.3	μg/L		B85-3	Total	9.00
504141	Water	10-Dec-07	Chromium	4.5	μg/L		B85-3	Total	7.70
8394092	Water	21-Sep-08	Chromium	3.5	μg/L		B85-3	Total	7.10
90906513	Water	16-Sep-09	Chromium	1.73	μg/L		B85-3	Total	2.34
1009065-10	Water	14-Sep-10	Chromium	0.5	μg/L	U	B85-3	Total	0.55
1009064-11	Water	14-Sep-11	Chromium	2	μg/L	U	B85-3	Total	1.51
1210057-10	Water	16-Oct-12	Chromium	2.50	μg/L	U	B85-3	Total	0.44

Note: Where a dissolved concentration is used, the NTU value listed is the pre-filtering value.

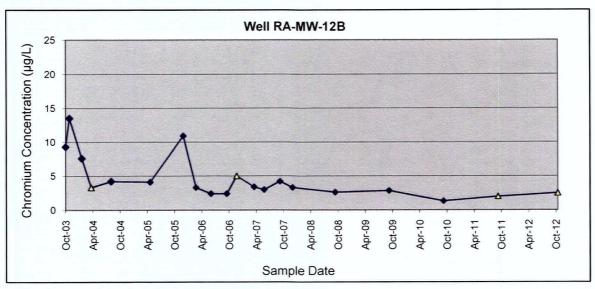

Well B85-4

Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AH4	Water	05-Feb-04	Chromium	37.7	μg/L		B85-4	Total	1.00
MJ2BK1	Water	07-Apr-04	Chromium	8.1	μg/L	J	B85-4	Total	0.00
MJ4738	Water	18-Aug-04	Chromium	3.7	μg/L	J	B85-4	Total	4.00
184246	Water	04-May-05	Chromium	1.1	μg/L		B85-4	Total	2.00
05504296	Water	13-Dec-05	Chromium	26.8	μg/L		B85-4	Total	5.70
104237	Water	06-Mar-06	Chromium	5.8	μg/L		B85-4	Total	3.90
244310	Water	14-Jun-06	Chromium	0.9	μg/L		B85-4	Total	0.30
394207	Water	27-Sep-06	Chromium	1.5	μg/L		B85-4	Total	1.00
494084	Water	02-Dec-06	Chromium	5	μg/L	U	B85-4	Total	0.00
134252	Water	30-Mar-07	Chromium	2.8	μg/L		B85-4	Total	1.40
234091	Water	06-Jun-07	Chromium	2.4	μg/L		B85-4	Total	2.10
504143	Water	11-Dec-07	Chromium	3.3	μg/L		B85-4	Total	1.40
8394097	Water	21-Sep-08	Chromium	1.9	μg/L		B85-4	Total	3.30
90906517	Water	15-Sep-09	Chromium	1.31	μg/L		B85-4	Total	0.71
1009065-08	Water	14-Sep-10	Chromium	0.86	μg/L		B85-4	Total	0.25
1009064-08	Water	13-Sep-11	Chromium	2	μg/L	U	B85-4	Total	1.11
1210057-11	Water	17-Oct-12	Chromium	2.50	μg/L	U	B85-4	Total	0.21

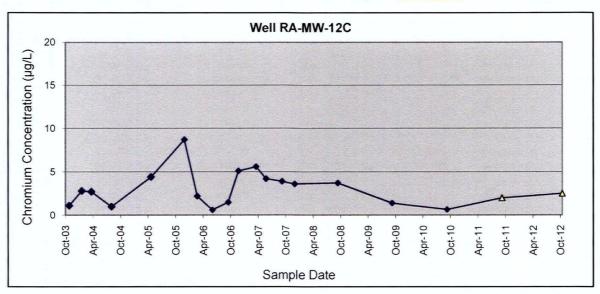
Note: Where a dissolved concentration is used, the NTU value listed is the pre-filtering value.


Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	<u>Notes</u>	NTU
MJ2AG9	Water	04-Feb-04	Chromium	18.2	μg/L		B87-8	Total	2.00
MJ2BK0	Water	07-Apr-04	Chromium	241	μg/L		B87-8	Total	8.00
MJ4737	Water	18-Aug-04	Chromium	8.5	μg/L	J	B87-8	Dissolved	36.00
184247	Water	04-May-05	Chromium	18.8	μg/L		B87-8	Total	6.50
05504297	Water	13-Dec-05	Chromium	31	μg/L		B87-8	Total	5.10
104236	Water	06-Mar-06	Chromium	50	μg/L		B87-8	Total	8.00
244308	Water	14-Jun-06	Chromium	21.8	μg/L		B87-8	Total	3.00
394204	Water	27-Sep-06	Chromium	13.4	μg/L		B87-8	Dissolved	13.00
494082	Water	02-Dec-06	Chromium	31	μg/L		B87-8	Total	0.10
134251	Water	30-Mar-07	Chromium	7.8	μg/L		B87-8	Dissolved	11.00
234089	Water	06-Jun-07	Chromium	9.2	μg/L		B87-8	Dissolved	0.90
384552	Water	18-Sep-07	Chromium	53.3	μg/L		B87-8	Dissolved	2.10
504144	Water	11-Dec-07	Chromium	56.9	μg/L		B87-8	Dissolved	8.40
8394098	Water	21-Sep-08	Chromium	119	μg/L		B87-8	Dissolved	13.00
90906520	Water	16-Sep-09	Chromium	40.5	μg/L		B87-8	Dissolved	16.70
1009065-20	Water	15-Sep-10	Chromium	2.71	μg/L		B87-8	Dissolved	6.60
1009064-10	Water	14-Sep-11	Chromium	3	μg/L		B87-8	Dissolved	2.54
1210057-13	Water	17-Oct-12	Chromium	5.00	μg/L	U	B87-8	Dissolved	7.47

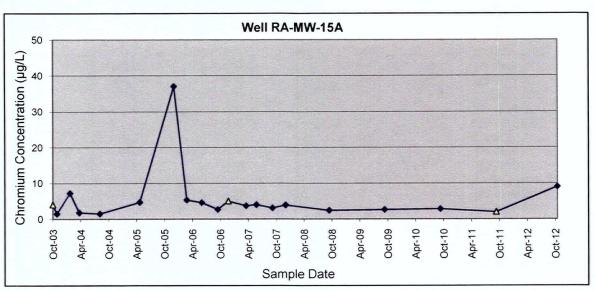
Note: Where a dissolved concentration is used, the NTU value listed is the pre-filtering value.


Well RA-MW-12A

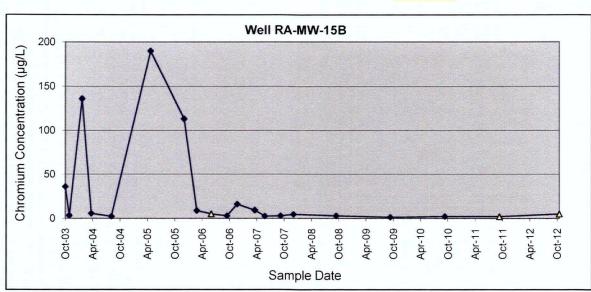
Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	<u>NTU</u>
MJ2524	Water	17-Oct-03	Chromium	192	μg/L		RA-MW-12A	Dissolved	>10
MJ27F5	Water	12-Nov-03	Chromium	155	μg/L		RA-MW-12A	Dissolved	>10
MJ2AF0	Water	02-Feb-04	Chromium	180	μg/L		RA-MW-12A	Total	7.00
MJ2BH9	Water	06-Apr-04	Chromium	55.8	μg/L		RA-MW-12A	Dissolved	17.00
MJ4725	Water	17-Aug-04	Chromium	24.9	μg/L		RA-MW-12A	Dissolved	12.00
184253	Water	05-May-05	Chromium	16	μg/L		RA-MW-12A	Dissolved	32.00
05504282	Water	12-Dec-05	Chromium	10.2	μg/L		RA-MW-12A	Dissolved	86.00
104243	Water	07-Mar-06	Chromium	9.6	μg/L		RA-MW-12A	Dissolved	60.00
244313	Water	15-Jun-06	Chromium	50	μg/L	U	RA-MW-12A	Dissolved	47.00
394218	Water	28-Sep-06	Chromium	6.0	μg/L		RA-MW-12A	Dissolved	80.00
494110	Water	04-Dec-06	Chromium	6.8	μg/L		RA-MW-12A	Dissolved	12.00
134255	Water	30-Mar-07	Chromium	5.0	μg/L		RA-MW-12A	Dissolved	85.00
234081	Water	05-Jun-07	Chromium	4.6	μg/L		RA-MW-12A	Dissolved	55.00
384560	Water	19-Sep-07	Chromium	4.7	μg/L		RA-MW-12A	Dissolved	11.00
504161	Water	12-Dec-07	Chromium	5.7	μg/L		RA-MW-12A	Dissolved	60.00
8394103	Water	22-Sep-08	Chromium	11.2	μg/L		RA-MW-12A	Dissolved	200.00
90906523	Water	16-Sep-09	Chromium	8.68	μg/L		RA-MW-12A	Dissolved	102.00
1009065-25	Water	15-Sep-10	Chromium	7.77	μg/L		RA-MW-12A	Dissolved	>10
1009064-24	Water	15-Sep-11	Chromium	9	μg/L		RA-MW-12A	Dissolved	40.00
1210057-25	Water	18-Oct-12	Chromium	6.08	μg/L		RA-MW-12A	Dissolved	12.10



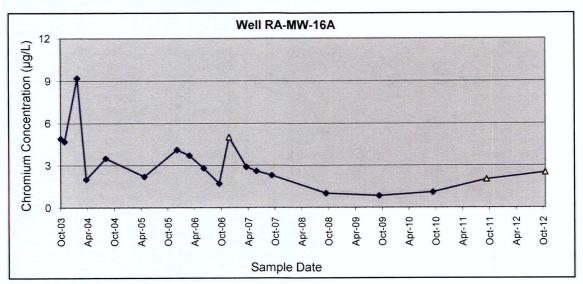
Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2526	Water	17-Oct-03	Chromium	9.3	μg/L	BJ	RA-MW-12B	Dissolved	>10
MJ27F7	Water	12-Nov-03	Chromium	13.5	μg/L		RA-MW-12B	Dissolved	>10
MJ2AF1	Water	02-Feb-04	Chromium	7.6	μg/L	J	RA-MW-12B	Total	6.00
MJ2BJ0	Water	06-Apr-04	Chromium	3.3	μg/L	U	RA-MW-12B	Total	0.00
MJ4726	Water	17-Aug-04	Chromium	4.2	μg/L	J	RA-MW-12B	Total	2.00
184254	Water	05-May-05	Chromium	4.1	μg/L		RA-MW-12B	Total	4.50
05504283	Water	12-Dec-05	Chromium	10.9	μg/L		RA-MW-12B	Total	8.00
104242	Water	07-Mar-06	Chromium	3.3	μg/L		RA-MW-12B	Total	1.70
244315	Water	15-Jun-06	Chromium	2.4	μg/L		RA-MW-12B	Total	14.00
394216	Water	28-Sep-06	Chromium	2.4	μg/L		RA-MW-12B	Total	1.00
494108	Water	04-Dec-06	Chromium	5	μg/L	U	RA-MW-12B	Total	2.00
134253	Water	30-Mar-07	Chromium	3.4	μg/L		RA-MW-12B	Total	2.20
234082	Water	05-Jun-07	Chromium	3.0	μg/L		RA-MW-12B	Total	1.10
384562	Water	19-Sep-07	Chromium	4.2	μg/L		RA-MW-12B	Total	0.80
504162	Water	12-Dec-07	Chromium	3.3	μg/L		RA-MW-12B	Total	0.60
8394105	Water	22-Sep-08	Chromium	2.6	μg/L		RA-MW-12B	Total	0.90
90906524	Water	17-Sep-09	Chromium	2.84	μg/L		RA-MW-12B	Total	0.97
1009065-24	Water	16-Sep-10	Chromium	1.32	μg/L		RA-MW-12B	Total	<10
1009064-22	Water	15-Sep-11	Chromium	2	μg/L	U	RA-MW-12B	Total	0.99
1210057-24	Water	18-Oct-12	Chromium	2.50	μg/L	U	RA-MW-12B	Total	0.79



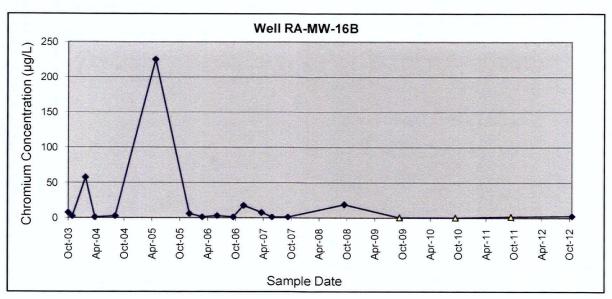
Well RA-MW-12C


Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	<u>NTU</u>
MJ2528	Water	17-Oct-03	Chromium	3.3	μg/L	BJ	RA-MW-12C	Dissolved	>10
MJ27F9	Water	12-Nov-03	Chromium	1.1	μg/L	BJ	RA-MW-12C	Dissolved	>10
MJ2AF2	Water	03-Feb-04	Chromium	2.8	μg/L	J	RA-MW-12C	Total	1.00
MJ2BJ1	Water	06-Apr-04	Chromium	2.7	μg/L	J	RA-MW-12C	Total	0.00
MJ4727	Water	17-Aug-04	Chromium	0.98	μg/L	J	RA-MW-12C	Total	2.00
184255	Water	5-May-05	Chromium	4.4	μg/L		RA-MW-12C	Total	5.20
05504284	Water	12-Dec-05	Chromium	8.7	μg/L		RA-MW-12C	Total	3.00
104245	Water	7-Mar-06	Chromium	2.2	μg/L		RA-MW-12C	Total	1.00
244317	Water	15-Jun-06	Chromium	0.6	µg/L	J	RA-MW-12C	Total	0.30
394215	Water	28-Sep-06	Chromium	1.5	μg/L		RA-MW-12C	Total	0.40
494117	Water	4-Dec-06	Chromium	5.1	μg/L		RA-MW-12C	Total	3.00
134256	Water	31-Mar-07	Chromium	5.6	μg/L		RA-MW-12C	Total	3.40
234079	Water	5-Jun-07	Chromium	4.2	μg/L		RA-MW-12C	Total	1.90
384563	Water	19-Sep-07	Chromium	3.9	μg/L		RA-MW-12C	Total	2.90
504163	Water	12-Dec-07	Chromium	3.6	μg/L		RA-MW-12C	Total	3.30
8394106	Water	22-Sep-08	Chromium	3.7	μg/L		RA-MW-12C	Total	1.90
90906525	Water	17-Sep-09	Chromium	1.4	μg/L		RA-MW-12C	Total	1.55
1009065-23	Water	16-Sep-10	Chromium	0.66	μg/L		RA-MW-12C	Total	<10
1009064-23	Water	15-Sep-11	Chromium	2	μg/L	U	RA-MW-12C	Total	0.68
1210057-23	Water	18-Oct-12	Chromium	2.50	μg/L	U	RA-MW-12C	Total	0.30

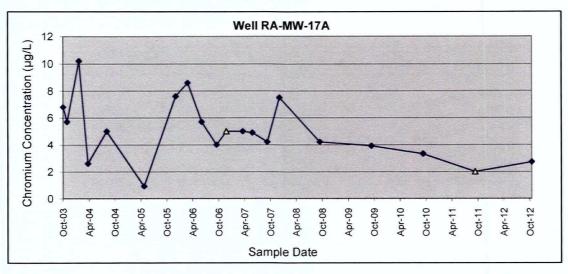
Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	<u>Notes</u>	NTU
MJ2506	Water	15-Oct-03	Chromium	4	μg/L	U	RA-MW-15A	Total	<10
MJ27E8	Water	11-Nov-03	Chromium	1.5	μg/L	BJ	RA-MW-15A	Total	<10
MJ2AG7	Water	04-Feb-04	Chromium	7.2	μg/L	J	RA-MW-15A	Total	1.00
MJ2BH1	Water	05-Apr-04	Chromium	1.8	μg/L	J	RA-MW-15A	Total	0.00
MJ4722	Water	17-Aug-04	Chromium	1.5	μg/L	J	RA-MW-15A	Total	0.00
184248	Water	04-May-05	Chromium	4.7	μg/L		RA-MW-15A	Total	2.00
05504290	Water	13-Dec-05	Chromium	37	μg/L		RA-MW-15A	Total	1.30
104251	Water	07-Mar-06	Chromium	5.3	μg/L		RA-MW-15A	Total	0.00
244290	Water	12-Jun-06	Chromium	4.6	μg/L		RA-MW-15A	Total	0.60
394192	Water	25-Sep-06	Chromium	2.7	μg/L		RA-MW-15A	Total	0.20
494090	Water	02-Dec-06	Chromium	5.0	μg/L	U	RA-MW-15A	Total	2.00
134241	Water	29-Mar-07	Chromium	3.7	μg/L		RA-MW-15A	Total	0.30
234068	Water	04-Jun-07	Chromium	4.0	μg/L		RA-MW-15A	Total	0.50
384541	Water	17-Sep-07	Chromium	3.1	μg/L		RA-MW-15A	Total	0.40
504153	Water	12-Dec-07	Chromium	3.9	μg/L		RA-MW-15A	Total	1.10
8394093	Water	21-Sep-08	Chromium	2.4	μg/L		RA-MW-15A	Total	0.30
90906514	Water	17-Sep-09	Chromium	2.62	μg/L		RA-MW-15A	Total	1.32
1009065-19	Water	16-Sep-10	Chromium	2.82	μg/L		RA-MW-15A	Total	<10
1009064-16	Water	15-Sep-11	Chromium	2	µg/L	U	RA-MW-15A	Total	2.46
1210057-18	Water	18-Oct-12	Chromium	9.00	μg/L		RA-MW-15A	Total	0.18



Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2507	Water	15-Oct-03	Chromium	35.8	μg/L		RA-MW-15B	Total	<10
MJ27E9	Water	11-Nov-03	Chromium	3.2	μg/L	BJ	RA-MW-15B	Total	<10
MJ2AG8	Water	04-Feb-04	Chromium	136	μg/L		RA-MW-15B	Total	2.00
MJ2BH2	Water	05-Apr-04	Chromium	5.5	μg/L	J	RA-MW-15B	Total	0.00
MJ4723	Water	17-Aug-04	Chromium	2.2	µg/L	J	RA-MW-15B	Total	1.00
184249	Water	04-May-05	Chromium	190	μg/L		RA-MW-15B	Total	9.70
05504288	Water	13-Dec-05	Chromium	113	μg/L		RA-MW-15B	Total	3.50
104252	Water	08-Mar-06	Chromium	8.7	μg/L		RA-MW-15B	Dissolved	5.00
244292	Water	12-Jun-06	Chromium	5	μg/L	U	RA-MW-15B	Dissolved	4.00
394190	Water	25-Sep-06	Chromium	2.8	μg/L		RA-MW-15B	Dissolved	4.00
494092	Water	02-Dec-06	Chromium	16	μg/L		RA-MW-15B	Dissolved	7.00
134243	Water	29-Mar-07	Chromium	9.2	μg/L		RA-MW-15B	Dissolved	2.40
234069	Water	04-Jun-07	Chromium	2.4	μg/L		RA-MW-15B	Dissolved	3.40
384543	Water	17-Sep-07	Chromium	2.8	µg/L		RA-MW-15B	Dissolved	2.60
504155	Water	12-Dec-07	Chromium	4.4	μg/L		RA-MW-15B	Dissolved	4.50
8394094	Water	21-Sep-08	Chromium	2.7	µg/L		RA-MW-15B	Dissolved	1.30
90906515	Water	17-Sep-09	Chromium	1.13	μg/L		RA-MW-15B	Dissolved	0.32
1009065-21	Water	16-Sep-10	Chromium	2.02	μg/L		RA-MW-15B	Dissolved	<10
1009064-17	Water	15-Sep-11	Chromium	2	μg/L	U	RA-MW-15B	Dissolved	0.95
1210057-19	Water	18-Oct-12	Chromium	5.00	μg/L	U	RA-MW-15B	Dissolved	0.31

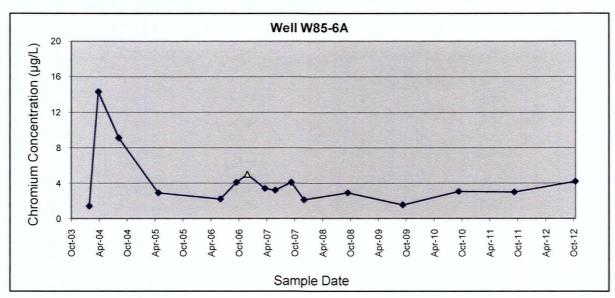


Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2502	Water	14-Oct-03	Chromium	4.9	μg/L	BJ	RA-MW-16A	Total	<10
MJ27E0	Water	10-Nov-03	Chromium	4.7	μg/L	BJ	RA-MW-16A	Total	<10
MJ2AG5	Water	04-Feb-04	Chromium	9.2	µg/L	J	RA-MW-16A	Total	1.00
MJ2BG8	Water	05-Apr-04	Chromium	2	μg/L	J	RA-MW-16A	Total	1.00
MJ4716	Water	16-Aug-04	Chromium	3.5	μg/L	J	RA-MW-16A	Total	2.00
184257	Water	05-May-05	Chromium	2.2	μg/L		RA-MW-16A	Total	8.50
05504293	Water	13-Dec-05	Chromium	4.1	μg/L		RA-MW-16A	Total	1.20
104238	Water	07-Mar-06	Chromium	3.7	μg/L		RA-MW-16A	Total	1.70
244304	Water	12-Jun-06	Chromium	2.8	µg/L		RA-MW-16A	Total	1.00
394189	Water	25-Sep-06	Chromium	1.7	μg/L		RA-MW-16A	Total	1.00
494087	Water	02-Dec-06	Chromium	5	μg/L	U	RA-MW-16A	Total	0.10
134236	Water	29-Mar-07	Chromium	2.9	μg/L		RA-MW-16A	Total	1.70
234085	Water	06-Jun-07	Chromium	2.6	μg/L		RA-MW-16A	Total	1.00
384538	Water	18-Sep-07	Chromium	2.3	μg/L		RA-MW-16A	Total	0.70
8394088	Water	20-Sep-08	Chromium	1	μg/L		RA-MW-16A	Total	1.30
90906509	Water	16-Sep-09	Chromium	0.83	μg/L		RA-MW-16A	Total	0.48
1009065-17	Water	16-Sep-10	Chromium	1.09	μg/L		RA-MW-16A	Total	<10
1009064-19	Water	15-Sep-11	Chromium	2	μg/L	U	RA-MW-16A	Total	1.05
1210057-21	Water	18-Oct-12	Chromium	2.50	μg/L	U	RA-MW-16A	Total	0.63

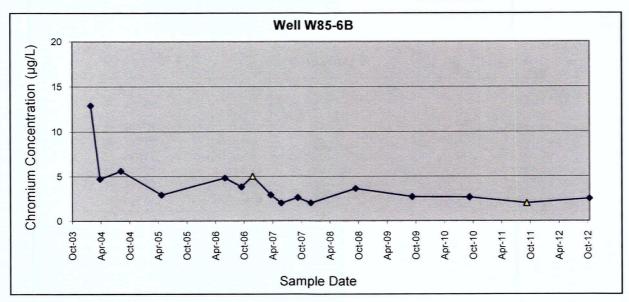


Well RA-MW-16B

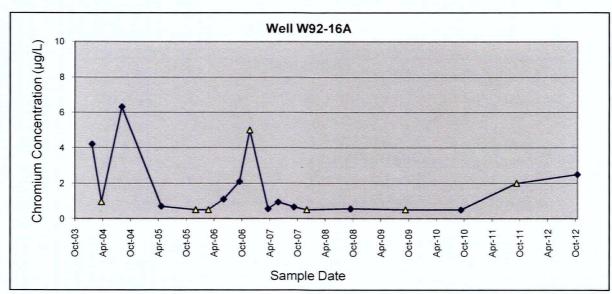
Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2503	Water	14-Oct-03	Chromium	7.6	μg/L	BJ	RA-MW-16B	Total	<10
MJ27E1	Water	10- N ov-03	Chromium	2.5	μg/L	BJ	RA-MW-16B	Total	<10
MJ2AG6	Water	04-Feb-04	Chromium	57.4	μg/L	BJ	RA-MW-16B	Total	1.00
MJ2BH0	Water	05-Apr-04	Chromium	1	μg/L	J	RA-MW-16B	Dissolved	0.00
MJ4717	Water	16-Aug-04	Chromium	2.8	μg/L	J	RA-MW-16B	Total	3.60
184256	Water	05-May-05	Chromium	225	μg/L		RA-MW-16B	Total	5.70
05504291	Water	13-Dec-05	Chromium	6.1	μg/L		RA-MW-16B	Dissolved	3.90
104239	Water	07-Mar-06	Chromium	1.3	μg/L		RA-MW-16B	Total	0.00
244305	Water	12-Jun-06	Chromium	3.2	μg/L		RA-MW-16B	Total	0.30
394187	Water	25-Sep-06	Chromium	1.3	μg/L		RA-MW-16B	Dissolved	0.70
494089	Water	02-Dec-06	Chromium	18	μg/L		RA-MW-16B	Dissolved	0.20
134238	Water	29-Mar-07	Chromium	7.9	μg/L		RA-MW-16B	Dissolved	3.70
234087	Water	06-Jun-07	Chromium	1.4	μg/L		RA-MW-16B	Dissolved	0.30
384540	Water	18-Sep-07	Chromium	1.4	μg/L		RA-MW-16B	Dissolved	3.00
8394089	Water	20-Sep-08	Chromium	19.2	μg/L		RA-MW-16B	Total	0.30
90906510	Water	16-Sep-09	Chromium	0.5	μg/L	U	RA-MW-16B	Total	0.85
1009065-18	Water	16-Sep-10	Chromium	0.5	μg/L	U	RA-MW-16B	Total	<10
1009064-20	Water	15-Sep-11	Chromium	2	μg/L	U	RA-MW-16B	Total	0.85
1210057-22	Water	18-Oct-12	Chromium	3.03	μg/L		RA-MW-16B	Total	0.18



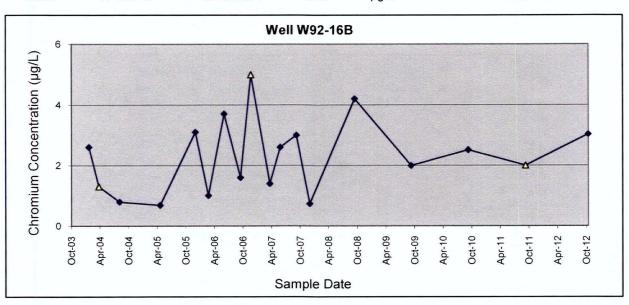
Sample Number	<u>Matrix</u>	Sample Date	<u>Analyte</u>	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2501	Water	14-Oct-03	Chromium	6.8	UG/L	BJ	RA-MW-17A	Total	<10
MJ27E5	Water	11-Nov-03	Chromium	5.7	UG/L	BJ	RA-MW-17A	Total	<10
MJ2AG0	Water	03-Feb-04	Chromium	10.2	UG/L	J	RA-MW-17A	Total	1.00
MJ2BH7	Water	06-Apr-04	Chromium	2.6	UG/L	J	RA-MW-17A	Total	0.00
MJ4715	Water	16-Aug-04	Chromium	5	UG/L	J	RA-MW-17A	Total	1.00
184260	Water	05-May-05	Chromium	0.92	UG/L		RA-MW-17A	Total	10.00
05504299	Water	13-Dec-05	Chromium	7.6	UG/L		RA-MW-17A	Total	3.10
104240	Water	07-Mar-06	Chromium	8.6	UG/L		RA-MW-17A	Total	7.00
244293	Water	13-Jun-06	Chromium	5.7	UG/L		RA-MW-17A	Total	1.00
394193	Water	26-Sep-06	Chromium	4.0	UG/L		RA-MW-17A	Total	1.00
494105	Water	04-Dec-06	Chromium	5.0	UG/L	U	RA-MW-17A	Total	0.80
134232	Water	29-Mar-07	Chromium	5.0	UG/L		RA-MW-17A	Total	1.20
234064	Water	04-Jun-07	Chromium	4.9	UG/L		RA-MW-17A	Total	2.70
384532	Water	17-Sep-07	Chromium	4.2	UG/L		RA-MW-17A	Total	1.70
504157	Water	12-Dec-07	Chromium	7.5	UG/L		RA-MW-17A	Total	0.90
8394090	Water	20-Sep-08	Chromium	4.2	UG/L		RA-MW-17A	Total	1.60
90906511	Water	17-Sep-09	Chromium	3.9	UG/L		RA-MW-17A	Total	0.57
1009065-15	Water	15-Sep-10	Chromium	3.31	UG/L		RA-MW-17A	Total	1.10
1009064-21	Water	15-Sep-11	Chromium	2	μg/L	U	RA-MW-17A	Total	1.12
1210057-15	Water	17-Oct-12	Chromium	2.71	µg/L		RA-MW-17A	Total	0.64


Well W85-6A

Sample Number	<u>Matrix</u>	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AJ8	Water	09-Feb-04	Chromium	1.4	μg/L	J	W85-6A	Total	No Data
MJ2BL0	Water	08-Apr-04	Chromium	14.3	μg/L		W85-6A	Total	0.00
MJ4747	Water	19-Aug-04	Chromium	9.1	μg/L	J	W85-6A	Total	<10
184235	Water	04-May-05	Chromium	2.9	μg/L		W85-6A	Total	1.00
244284	Water	12-Jun-06	Chromium	2.2	μg/L		W85-6A	Total	0.70
394182	Water	25-Sep-06	Chromium	4.1	μg/L		W85-6A	Total	0.10
494113	Water	05-Dec-06	Chromium	5	μg/L	U	W85-6A	Total	2.00
134245	Water	30-Mar-07	Chromium	3.4	μg/L		W85-6A	Total	0.50
234072	Water	05-Jun-07	Chromium	3.2	μg/L		W85-6A	Total	0.20
384545	Water	18-Sep-07	Chromium	4.1	μg/L		W85-6A	Total	0.60
504132	Water	10-Dec-07	Chromium	2.1	μg/L		W85-6A	Total	0.50
8394083	Water	20-Sep-08	Chromium	2.9	μg/L		W85-6A	Total	0.20
90906501	Water	15-Sep-09	Chromium	1.53	μg/L		W85-6A	Total	0.64
1009065-03	Water	15-Sep-10	Chromium	3.06	μg/L		W85-6A	Total	0.15
1009064-03	Water	13-Sep-11	Chromium	3	μg/L		W85-6A	Total	0.61
1210057-03	Water	16-Oct-12	Chromium	4.21	µg/L		W85-6A	Total	0.14

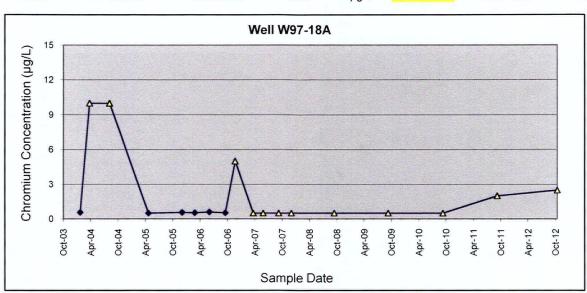


Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AJ9	Water	09-Feb-04	Chromium	12.9	μg/L		W85-6B	Total	No Data
MJ2BL1	Water	08-Apr-04	Chromium	4.7	μg/L	J	W85-6B	Total	0.00
MJ4748	Water	19-Aug-04	Chromium	5.6	μg/L	J	W85-6B	Total	5.00
184236	Water	04-May-05	Chromium	2.9	μg/L		W85-6B	Total	1.00
244286	Water	12-Jun-06	Chromium	4.8	μg/L		W85-6B	Total	49.00
394183	Water	25-Sep-06	Chromium	3.8	μg/L		W85-6B	Total	14.00
494114	Water	05-Dec-06	Chromium	5	μg/L	U	W85-6B	Total	9.00
134246	Water	30-Mar-07	Chromium	2.9	μg/L		W85-6B	Total	4.60
234073	Water	05-Jun-07	Chromium	2.0	μg/L		W85-6B	Total	1.80
384546	Water	18-Sep-07	Chromium	2.6	μg/L		W85-6B	Total	1.30
504133	Water	10-Dec-07	Chromium	2	μg/L		W85-6B	Total	0.30
8394081	Water	20-Sep-08	Chromium	3.6	μg/L		W85-6B	Total	0.20
90906502	Water	15-Sep-09	Chromium	2.69	μg/L		W85-6B	Total	0.35
1009065-05	Water	14-Sep-10	Chromium	2.65	μg/L		W85-6B	Total	0.30
1009064-05	Water	13-Sep-11	Chromium	2	μg/L	U	W85-6B	Total	0.54
1210057-05	Water	16-Oct-12	Chromium	2.50	μg/L	U	W85-6B	Total	0.24

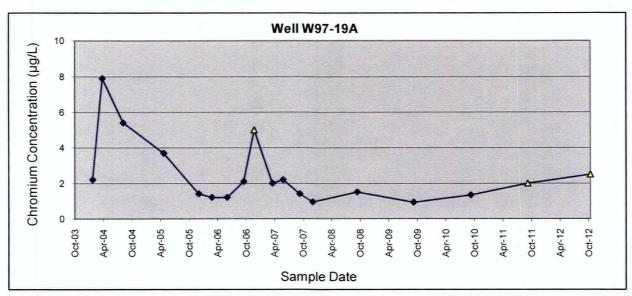


Well W92-16A

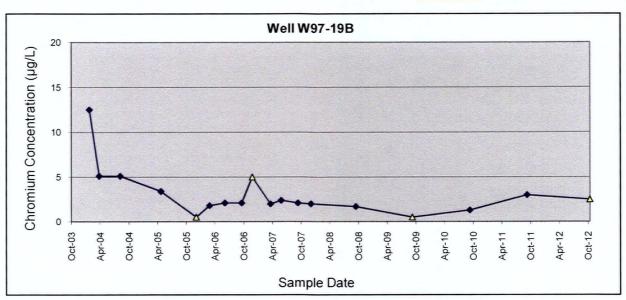
Sample Number	<u>Matrix</u>	Sample Date	Analyte	Conc.	Units	Qualifier	Station Location	Notes	NTU
MJ2AH1	Water	05-Feb-04	Chromium	4.2	µg/L	J	W92-16A	Total	2.00
MJ2BJ7	Water	07-Apr-04	Chromium	0.95	μg/L	U	W92-16A	Total	0.00
MJ4734	Water	18-Aug-04	Chromium	6.3	µg/L	J	W92-16A	Total	0.00
184234	Water	03-May-05	Chromium	0.7	μg/L		W92-16A	Total	0.70
05504311	Water	14-Dec-05	Chromium	0.5	μg/L	U	W92-16A	Total	0.70
104234	Water	06-Mar-06	Chromium	0.5	μg/L	U	W92-16A	Total	0.70
244304	Water	14-Jun-06	Chromium	1.1	µg/L		W92-16A	Total	2.00
394200	Water	26-Sep-06	Chromium	2.1	μg/L		W92-16A	Total	4.00
494085	Water	02-Dec-06	Chromium	5	μg/L	U	W92-16A	Total	0.10
134267	Water	01-Apr-07	Chromium	0.56	μg/L		W92-16A	Total	2.50
234093	Water	06-Jun-07	Chromium	0.94	µg/L		W92-16A	Total	1.80
384549	Water	18-Sep-07	Chromium	0.66	μg/L		W92-16A	Total	1.30
504152	Water	11-Dec-07	Chromium	0.5	μg/L	U	W92-16A	Total	0.40
8394091	Water	22-Sep-08	Chromium	0.55	μg/L		W92-16A	Total	1.50
90906521	Water	16-Sep-09	Chromium	0.5	µg/L	U	W92-16A	Total	0.48
1009065-12	Water	15-Sep-10	Chromium	0.5	μg/L	U	W92-16A	Total	0.50
1009064-12	Water	14-Sep-11	Chromium	2	μg/L	U	W92-16A	Total	0.47
1210057-16	Water	17-Oct-12	Chromium	2.50	μg/L		W92-16A	Total	1.33



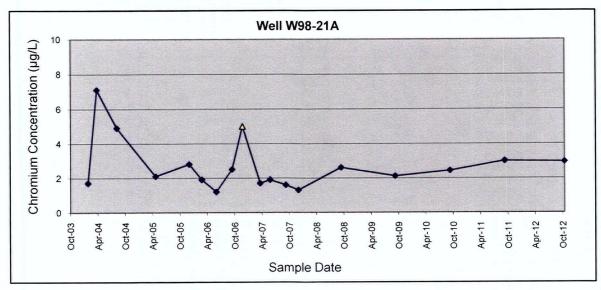
Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AH3	Water	05-Feb-04	Chromium	2.6	μg/L	J	W92-16B	Total	7.00
MJ2BJ8	Water	07-Apr-04	Chromium	1.3	μg/L	U	W92-16B	Total	2.00
MJ4735	Water	18-Aug-04	Chromium	0.79	μg/L	J	W92-16B	Total	<10
184233	Water	03-May-05	Chromium	0.68	μg/L		W92-16B	Total	3.90
05504312	Water	14-Dec-05	Chromium	3.1	μg/L		W92-16B	Total	5.10
104233	Water	06-Mar-06	Chromium	1	μg/L		W92-16B	Total	8.70
244305	Water	14-Jun-06	Chromium	3.7	μg/L		W92-16B	Total	7.00
394201	Water	26-Sep-06	Chromium	1.6	μg/L		W92-16B	Total	0.70
494086	Water	02-Dec-06	Chromium	5	μg/L	U	W92-16B	Total	1.00
134268	Water	01-Apr-07	Chromium	1.4	μg/L		W92-16B	Total	6.80
234094	Water	06-Jun-07	Chromium	2.6	μg/L		W92-16B	Total	0.60
384550	Water	18-Sep-07	Chromium	3.0	μg/L		W92-16B	Total	2.20
504151	Water	11-Dec-07	Chromium	0.73	μg/L		W92-16B	Total	2.20
8394092	Water	22-Sep-08	Chromium	4.2	μg/L		W92-16B	Total	3.80
90906522	Water	16-Sep-09	Chromium	1.99	μg/L		W92-16B	Total	0.85
1009065-11	Water	15-Sep-10	Chromium	2.51	μg/L		W92-16B	Total	0.55
1009064-13	Water	14-Sep-11	Chromium	2	μg/L	U	W92-16B	Total	1.90
1210057-17	Water	17-Oct-12	Chromium	3.03	µg/L		W92-16B	Total	0.52


Well W97-18A

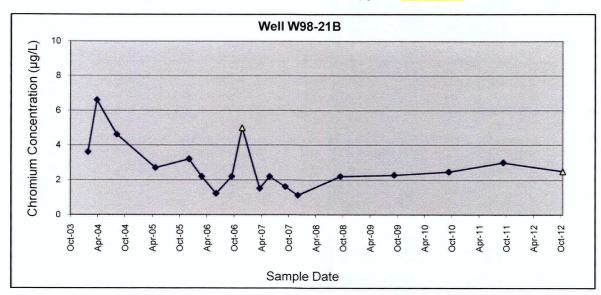
Sample Number	<u>Matrix</u>	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AH5	Water	05-Feb-04	Chromium	0.56	μg/L	J	W97-18A	Total	14.00
MJ2BK2	Water	07-Apr-04	Chromium	10	μg/L	U	W97-18A	Total	0.00
MJ4739	Water	18-Aug-04	Chromium	10	μg/L	U	W97-18A	Total	5.00
184244	Water	04-May-05	Chromium	0.5	µg/L		W97-18A	Total	1.00
05504300	Water	14-Dec-05	Chromium	0.56	µg/L		W97-18A	Total	4.00
104256	Water	08-Mar-06	Chromium	0.53	μg/L		W97-18A	Total	0.00
244298	Water	13-Jun-06	Chromium	0.6	μg/L		W97-18A	Total	9.00
394209	Water	27-Sep-06	Chromium	0.53	μg/L		W97-18A	Total	6.00
494080	Water	02-Dec-06	Chromium	5	µg/L	U	W97-18A	Total	1.00
134269	Water	01-Apr-07	Chromium	0.5	μg/L	U	W97-18A	Total	8.50
234095	Water	06-Jun-07	Chromium	0.5	µg/L	U	W97-18A	Total	0.60
384555	Water	18-Sep-07	Chromium	0.5	μg/L	U	W97-18A	Total	7.70
504142	Water	11-Dec-07	Chromium	0.5	μg/L	U	W97-18A	Total	3.10
8394097	Water	21-Sep-08	Chromium	0.5	μg/L	U	W97-18A	Total	0.90
90906512	Water	16-Sep-09	Chromium	0.5	μg/L	U	W97-18A	Total	0.35
1009065-16	Water	16-Sep-10	Chromium	0.5	µg/L	U	W97-18A	Total	<10
1009064-09	Water	13-Sep-11	Chromium	2	μg/L	U	W97-18A	Total	0.88
1210057-14	Water	17-Oct-12	Chromium	2.50	μg/L	U	W97-18A	Total	0.37



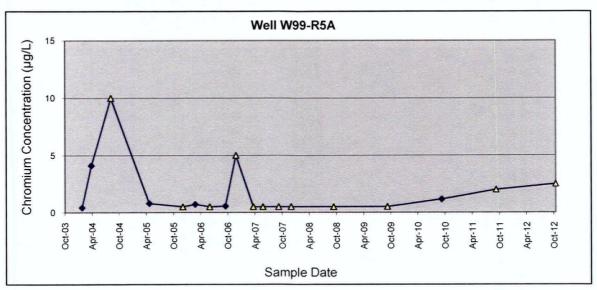
Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AJ0	Water	06-Feb-04	Chromium	2.2	μg/L	J	W97-19A	Total	7.00
MJ2BK4	Water	08-Apr-04	Chromium	7.9	μg/L	J	W97-19A	Total	2.00
MJ4749	Water	19-Aug-04	Chromium	5.4	μg/L	J	W97-19A	Total	8.00
184242	Water	04-May-05	Chromium	3.7	μg/L		W97-19A	Total	1.80
05504303	Water	14-Dec-05	Chromium	1.4	μg/L		W97-19A	Total	0.00
104259	Water	08-Mar-06	Chromium	1.2	μg/L		W97-19A	Total	1.00
244296	Water	13-Jun-06	Chromium	1.2	µg/L		W97-19A	Total	1.00
394211	Water	27-Sep-06	Chromium	2.1	μg/L		W97-19A	Total	0.40
494095	Water	03-Dec-06	Chromium	5.0	μg/L	U	W97-19A	Total	1.00
134239	Water	29-Mar-07	Chromium	2.0	μg/L		W97-19A	Total	3.30
234077	Water	05-Jun-07	Chromium	2.2	μg/L		W97-19A	Total	1.80
384556	Water	19-Sep-07	Chromium	1.4	μg/L		W97-19A	Total	1.90
504149	Water	11-Dec-07	Chromium	0.94	μg/L		W97-19A	Total	1.00
8394084	Water	20-Sep-08	Chromium	1.5	μg/L		W97-19A	Total	1.90
90906505	Water	14-Sep-09	Chromium	0.92	μg/L		W97-19A	Total	3.23
1009065-01	Water	14-Sep-10	Chromium	1.33	μg/L		W97-19A	Total	3.00
1009064-01	Water	12-Sep-11	Chromium	2	μg/L	U	W97-19A	Total	0.70
1210057-01	Water	15-Oct-12	Chromium	2.50	μg/L	U	W97-19A	Total	0.27


Well W97-19B

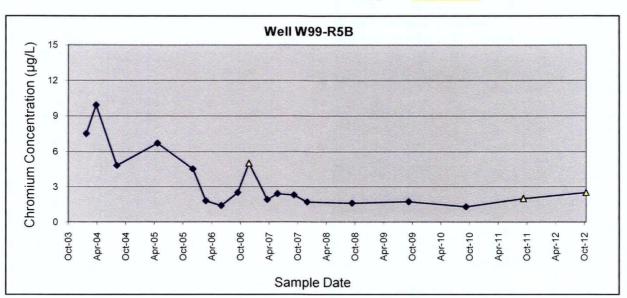
Sample Number	<u>Matrix</u>	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AJ1	Water	06-Feb-04	Chromium	12.5	µg/L	J	W97-19B	Total	0.00
MJ2BK5	Water	08-Apr-04	Chromium	5.1	µg/L	J	W97-19B	Total	1.00
MJ4750	Water	19-Aug-04	Chromium	5.1	µg/L	J	W97-19B	Total	3.00
184243	Water	04-May-05	Chromium	3.4	μg/L		W97-19B	Total	1.00
05504304	Water	14-Dec-05	Chromium	0.5	μg/L	U	W97-19B	Total	0.00
104260	Water	08-Mar-06	Chromium	1.8	μg/L		W97-19B	Total	5.00
244297	Water	13-Jun-06	Chromium	2.1	μg/L		W97-19B	Total	0.50
394212	Water	27-Sep-06	Chromium	2.1	μg/L		W97-19B	Total	1.00
494096	Water	03-Dec-06	Chromium	5.0	µg/L	U	W97-19B	Total	1.00
134240	Water	29-Mar-07	Chromium	2.0	µg/L		W97-19B	Total	6.90
234078	Water	05-Jun-07	Chromium	2.4	μg/L		W97-19B	Total	1.90
384557	Water	19-Sep-07	Chromium	2.1	µg/L		W97-19B	Total	0.20
504150	Water	11-Dec-07	Chromium	2.0	μg/L		W97-19B	Total	4.70
8394085	Water	20-Sep-08	Chromium	1.7	μg/L		W97-19B	Total	0.20
90906506	Water	14-Sep-09	Chromium	0.5	μg/L	U	W97-19B	Total	0.50
1009065-02	Water	14-Sep-10	Chromium	1.3	μg/L		W97-19B	Total	0.20
1009064-02	Water	12-Sep-11	Chromium	3	μg/L		W97-19B	Total	0.54
1210057-02	Water	15-Oct-12	Chromium	2.50	μg/L	U	W97-19B	Total	0.37



Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AJ6	Water	09-Feb-04	Chromium	1.7	μg/L	J	W98-21A	Total	No Data
MJ2BK8	Water	08-Apr-04	Chromium	7.1	μg/L	J	W98-21A	Total	0.00
MJ4743	Water	19-Aug-04	Chromium	4.9	μg/L	J	W98-21A	Total	0.00
184237	Water	04-May-05	Chromium	2.1	μg/L		W98-21A	Total	1.30
05504309	Water	14-Dec-05	Chromium	2.8	μg/L		W98-21A	Total	0.10
104261	Water	08-Mar-06	Chromium	1.9	μg/L		W98-21A	Total	0.00
244282	Water	12-Jun-06	Chromium	1.2	μg/L		W98-21A	Total	0.30
394185	Water	25-Sep-06	Chromium	2.5	μg/L		W98-21A	Total	0.20
494098	Water	03-Dec-06	Chromium	5	μg/L	U	W98-21A	Total	0.10
134261	Water	31-Mar-07	Chromium	1.7	μg/L		W98-21A	Total	0.20
234074	Water	05-Jun-07	Chromium	1.9	μg/L		W98-21A	Total	0.90
384547	Water	18-Sep-07	Chromium	1.6	μg/L		W98-21A	Total	0.20
504146	Water	11-Dec-07	Chromium	1.3	μg/L		W98-21A	Total	2.60
8394082	Water	20-Sep-08	Chromium	2.6	μg/L		W98-21A	Total	0.10
90906503	Water	15-Sep-09	Chromium	2.11	μg/L		W98-21A	Total	0.72
1009065-13	Water	15-Sep-10	Chromium	2.43	μg/L		W98-21A	Total	0.15
1009064-14	Water	14-Sep-11	Chromium	3	μg/L		W98-21A	Total	0.59
1210057-09	Water	16-Oct-12	Chromium	2.95	μg/L		W98-21A	Total	0.23


Well W98-21B

Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AJ7	Water	09-Feb-04	Chromium	3.6	μg/L	J	W98-21B	Total	No Data
MJ2BK9	Water	08-Apr-04	Chromium	6.6	μg/L	J	W98-21B	Total	0.00
MJ4744	Water	19-Aug-04	Chromium	4.6	μg/L	J	W98-21B	Total	5.00
184238	Water	04-May-05	Chromium	2.7	μg/L		W98-21B	Total	0.50
05504310	Water	14-Dec-05	Chromium	3.2	μg/L		W98-21B	Total	0.00
104262	Water	08-Mar-06	Chromium	2.2	μg/L		W98-21B	Total	0.00
244283	Water	12-Jun-06	Chromium	1.2	μg/L		W98-21B	Total	0.30
394186	Water	25-Sep-06	Chromium	2.2	μg/L		W98-21B	Total	0.10
494099	Water	03-Dec-06	Chromium	5	μg/L	U	W98-21B	Total	0.20
134262	Water	31-Mar-07	Chromium	1.5	μg/L		W98-21B	Total	0.10
234075	Water	05-Jun-07	Chromium	2.2	μg/L		W98-21B	Total	0.20
384548	Water	18-Sep-07	Chromium	1.6	μg/L		W98-21B	Total	0.20
504147	Water	11-Dec-07	Chromium	1.1	μg/L		W98-21B	Total	1.70
8394083	Water	20-Sep-08	Chromium	2.2	μg/L		W98-21B	Total	0.40
90906504	Water	15-Sep-09	Chromium	2.28	μg/L		W98-21B	Total	0.76
1009065-14	Water	15-Sep-10	Chromium	2.47	μg/L		W98-21B	Total	0.45
1009064-15	Water	14-Sep-11	Chromium	3	μg/L		W98-21B	Total	0.61
1210057-08	Water	16-Oct-12	Chromium	2.50	μg/L	U	W98-21B	Total	0.16



Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	Qualifier	Station Location	Notes	NTU
MJ2AJ3	Water	07-Feb-04	Chromium	0.41	μg/L	J	W99-R5A	Total	0.00
MJ2BL3	Water	09-Apr-04	Chromium	4.1	μg/L	J	W99-R5A	Total	0.00
MJ4745	Water	19-Aug-04	Chromium	10	μg/L	U	W99-R5A	Total	10.00
184230	Water	03-May-05	Chromium	0.79	µg/L		W99-R5A	Total	1.00
05504305	Water	14-Dec-05	Chromium	0.5	μg/L	U	W99-R5A	Total	0.00
104230	Water	06-Mar-06	Chromium	0.7	μg/L		W99-R5A	Total	0.00
244280	Water	12-Jun-06	Chromium	0.5	μg/L	U	W99-R5A	Total	1.00
394180	Water	25-Sep-06	Chromium	0.55	μg/L		W99-R5A	Total	1.00
494115	Water	05-Dec-06	Chromium	5	μg/L	U	W99-R5A	Total	1.00
134264	Water	31-Mar-07	Chromium	0.5	μg/L	U	W99-R5A	Total	0.30
234060	Water	04-Jun-07	Chromium	0.5	μg/L	U	W99-R5A	Total	0.40
384530	Water	17-Sep-07	Chromium	0.5	μg/L	U	W99-R5A	Total	1.00
504130	Water	10-Dec-07	Chromium	0.5	μg/L	U	W99-R5A	Total	0.50
8394086	Water	20-Sep-08	Chromium	0.5	μg/L	U	W99-R5A	Total	0.40
90906507	Water	15-Sep-09	Chromium	0.5	μg/L	U	W99-R5A	Total	0.22
1009065-07	Water	14-Sep-10	Chromium	1.14	μg/L		W99-R5A	Total	0.10
1009064-07	Water	13-Sep-11	Chromium	2	μg/L	U	W99-R5A	Total	0.54
1210057-06	Water	16-Oct-12	Chromium	2.50	μg/L	U	W99-R5A	Total	0.23

Well W99-R5B

Sample Number	Matrix	Sample Date	<u>Analyte</u>	Conc.	Units	Qualifier	Station Location	Notes	<u>NTU</u>
MJ2AJ5	Water	07-Feb-04	Chromium	7.5	μg/L	J	W99-R5B	Total	0.00
MJ2BL4	Water	09-Apr-04	Chromium	9.9	μg/L	J	W99-R5B	Total	0.00
MJ4746	Water	19-Aug-04	Chromium	4.8	μg/L	J	W99-R5B	Total	8.00
184231	Water	03-May-05	Chromium	6.7	μg/L		W99-R5B	Total	2.30
05504306	Water	14-Dec-05	Chromium	4.5	μg/L		W99-R5B	Total	2.10
104231	Water	06-Mar-06	Chromium	1.8	μg/L		W99-R5B	Total	0.00
244281	Water	12-Jun-06	Chromium	1.4	µg/L		W99-R5B	Total	3.00
394181	Water	25-Sep-06	Chromium	2.5	μg/L		W99-R5B	Total	1.00
494116	Water	05-Dec-06	Chromium	5	μg/L	U	W99-R5B	Total	1.00
134265	Water	31-Mar-07	Chromium	1.9	μg/L		W99-R5B	Total	10.00
234061	Water	04-Jun-07	Chromium	2.4	μg/L		W99-R5B	Total	0.70
384531	Water	17-Sep-07	Chromium	2.3	µg/L		W99-R5B	Total	1.60
504130	Water	10-Dec-07	Chromium	1.7	μg/L		W99-R5B	Total	2.00
8394087	Water	20-Sep-08	Chromium	1.6	μg/L		W99-R5B	Total	0.80
90906508	Water	15-Sep-09	Chromium	1.73	μg/L		W99-R5B	Total	0.24
1009065-06	Water	14-Sep-10	Chromium	1.3	μg/L		W99-R5B	Total	0.20
1009064-06	Water	13-Sep-11	Chromium	2	μg/L	U	W99-R5B	Total	0.90
1210057-07	Water	16-Oct-12	Chromium	2.50	μg/L	U	W99-R5B	Total	0.19

APPENDIX B LABORATORY DATA SHEETS

Manchester Environmental Laboratory

7411 Beach Drive E, Port Orchard, Washington 98366

Case Narrative

October 29, 2012

Project:

Metals Frontier Hardchrome-2012

Work Order: 1210057

Project

Manager:

Barrett, Guy

By:

Dean Momohara

Summary

The laboratory followed EPA 200.7 for the preparation and analysis of trace metals.

All analyses requested were evaluated by established regulatory quality assurance guidelines.

Sample Information

The samples were received at the Manchester Laboratory on 10/23/2012. The samples were received in good condition and were properly preserved. Twenty five samples were received and assigned laboratory identification numbers 01 to 03 and 05 to 26.

Holding Times

The laboratory performed all analyses within their hold times.

Calibration

The instruments were calibrated following the appropriate methods. All initial and continuing calibration verification checks were within the acceptance limits. All initial and continuing calibration verification and blank checks were within the acceptance limits. The instruments were calibrated with NIST traceable standards and verified to be in calibration with a second source NIST traceable standard.

Method Blanks

No analytically significant levels of analyte were detected in the method blanks associated with these samples.

Laboratory Control Samples

All laboratory control sample recoveries were within the acceptance limits.

Replicates

All associated duplicate relative percent differences of samples with concentrations greater than 5 times the reporting limit were within the acceptance limits.

Matrix Spikes

All matrix spike recoveries were within the acceptance limits.

Internal Standards

NA

Other Quality Assurance Measures and Issues

U - The analyte was not detected at or above the reported result.

bold - The analyte was present in the sample. (Visual Aid to locate detected compounds on report sheet.)

Please call Dean Momohara at (360) 871-8808 to further discuss this project.

cc: Project File

Washington State Department of Ecology Manchester Environmental Laboratory Final Analysis Report for Chromium, total_ICP

Project Name: Frontier Hardchrome-2012

Work Order: 15 Project Officer: Date Collected:	: Barrett, Guy	Met	lyte: Chro hod: EPA2 Analyzed		12			Matrix: W Units: ug	_
Sample #	Sample ID		Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210057-01	W97-19A		2.50	U	2.50	0.717	10/15/12	10/26/12	B12J210
1210057-02	W97-19B	.*	2.50	Ū	2.50	0.717	10/15/12	10/26/12	B12J210
1210057-03	W85-6A		4.21		2.50	0.717	10/16/12	10/26/12	B12J210
1210057-05	W85-6B		2.50		2.50	0.717	10/16/12	10/26/12	B12J210
1210057-06	W99-R5A		2.50	U	2.50	0.717	10/16/12	10/26/12	B12J210
1210057-07	W99-R5B		2.50	U .	2.50	0.717	10/16/12	10/26/12	B12J210
1210057-08	W98-21B		2.50	U	2.50	0.717	10/16/12	10/26/12	B12J210
1210057-09	W98-21A		2.95		2.50	0.717	10/16/12	10/26/12	B12J210
1210057-10	B85-3		2.50	U	2.50	0.717	10/16/12	10/26/12	B12J210
1210057-11	B85-4		2.50	U	2.50	0.717	10/17/12	10/26/12	B12J210
1210057-12	QA-2	4.	2.50	U	2.50	0.717	10/17/12	10/26/12	B12J210
1210057-13	B87-8		6.86		2.50	0.717	10/17/12	10/26/12	B12J210
1210057-14	W97-18A		2.50	U	2.50	0.717	10/17/12	10/26/12	B12J210
1210057-15	RA-MW-17A		2.71	÷	2.50	0.717	10/17/12	10/26/12	B12J210

QC Results for Batch ID: B12J210

Method Blank	Sample ID	.55	Result	Qualife	r	RL	MDL		Analyze	<u>d</u>	
B12J210-BLK1	Blank		2.50	U	:	2.50	0.717		10/26/1	2 .	
Sample #	QC Sample		Result		Spike Level	Source Sample	Source Result	%Rec	%Rec Limits	RPD	RPD Limit
B12J210-BS1	LCS		1960		2000	•		98	85-115		
B12J210-MS1	Matrix Spike		1960		2000	1210057-03	1 1.27	98	75-125		
B12J210-MSD1	Matrix Spike Dup		1980		2000	1210057-0	1 1.27	99	75-125	.1	20

Authorized by:	DW	Release Date:	10/29/17	Page 1 of 3
				10/29/2012

Washington State Department of Ecology Manchester Environmental Laboratory Final Analysis Report for Chromium, total_ICP

Project Name: Frontier Hardchrome-2012

Work Order: 13 Project Officer: Date Collected:	Barrett, Guy		Met	nalyte: Chromium Nethod: EPA200.7 ate Analyzed: 10/26/2012				Matrix: W Units: u		
Sample #	Sample ID			Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210057-16	W92-16A		-	2.50	U	2.50	0.717	10/17/12	10/26/12	B12J261
1210057-17	₩92-16B			3.03		2.50	0.717	10/17/12	10/26/12	B12J261
1210057-18	RA-MW-15A			9.00		2.50	0.717	10/18/12	10/26/12	B12J261
1210057-19	RA-MW-15B			2.50	U	2.50	0.717	10/18/12	10/26/12	B12J261
1210057-20	QA-3		•	2.50	U	2.50	0.717	10/18/12	10/26/12	B12J261
1210057-21	RA-MW-16A	•		2.50	Ū	2.50	0.717	10/18/12	10/26/12	B12J261
1210057-22	RA-MW-16B			2.50	U	2.50	0.717	10/18/12	10/26/12	B12J261
1210057-23	RA-MW-12C		•	2.50	U	2.50	0.717	10/18/12	10/26/12	B12J261
1210057-24	RA-MW-12B	•		2.50	U	2.50	0.717	10/18/12	10/26/12	B12J261
1210057-25	RA-MW-12A			61.9		2.50	0.717	10/18/12	10/26/12	B12J261
1210057-26	QA-4			73.3		2.50	0.717	10/18/12	10/26/12	B12J261

QC Results for Batch ID: B12J261

Method Blank	Sample ID	Result	Qualifer	RL	MDL.	·	Analyze	d	
B12J261-BLK1	Blank	2.50	U	2.50	0.717		10/26/1	2	
Sample #	QC Sample	Result	Spike Level	Source Sample	Source Result	%Rec	%Rec Limits	RPD	RPD Limit
B12J261-BS1	LCS	2000	2000			100	85-115		
B12J261-MS1	Matrix Spike	1920	2000	1210057-16	5 1.40	96	75-125		
B12J261-MSD1	Matrix Spike Dup	1900	2000	1210057-1	5 1.40	95	75-125	0.7	20

Authorized by:	<u>Or</u>	Release Date:	10/29/12	Page 2 of 3
				10/29/2012

Washington State Department of Ecology Manchester Environmental Laboratory Final Analysis Report for Dissolved Chromium

Project Name: Frontier Hardchrome-2012

Work Order: 1 Project Officer Date Collected	: Barrett, Guy	Analyte: Chro Method: EPA Date Analyzed	200.7		Matrix: Water Units: ug/L			
Sample #	Sample ID	Result	Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210057-13	B87-8	5.00	· U	5.00	2.00	10/17/12	10/23/12	B12J193
1210057-19	RA-MW-15B	5.00	U	5.00	2.00	10/18/12	10/23/12	B12J193
1210057-20	QA-3	5.00	U	5.00	2.00	10/18/12	10/23/12	B12J193
1210057-25	RA-MW-12A	6.08	·	5.00	2.00	10/18/12	10/23/12	B12J193

QC Results for Batch ID: B12J193

Method Blank	Sample ID	Result	Qualifer		RL	MDL		Analyzed	ł	
B12J193-BLK1	Blank	5.00	U	5	.00	2.00		10/23/12	2	
Sample #	QC Sample	Result		oike evel	Source Sample	Source Result	%Rec	%Rec Limits	RPD	RPD Limit
B12J193-BS1	LCS	3750	4	000			94	85-115		
B12J193-MS1	Matrix Spike	4490	5(00Ó	1210057-13	3 2.10	90	75-125		i
B12J193-MSD1	Matrix Spike Dup	4580	50	000	1210057-13	3 2.10	92	75-125	2	20

•	·			
Authorized by:	Dn	Release Date:	10/29/17~	Page 3 of 3
•				10/29/2012

October 19, 2012

Analytical Report for Service Request No: K1210496

Karin Feddersen Washington State Department of Ecology 7411 Beach Drive East Port Orchard, WA 98366

RE: FRONTIER HARDCHROME/1210057

Dear Karin:

Enclosed are the results of the sample submitted to our laboratory on October 17, 2012. For your reference, these analyses have been assigned our service request number K1210496.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at Howard. Holmes@alsglobal.com.

Respectfully submitted,

Columbia Analytical Services, Inc. dba ALS Environmental

Howard Holmes Project Manager

HH/jw

Page 1 of 21

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- The result is an estimated value
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- O See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aidol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS)	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR va	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	-
Idáhō DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	_
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEO	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Louisiana DHH	Not available	LA110003
Maine DHS	Not available	WA0035
Michigan DEO	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Ainnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
New Mexico ED	http://www.nmenv.state.nm.us/dwb/Index.htm	-
North Carolina DWO	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon - DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	704427 - 08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	
Kelso Laboratory Website	www.caslab.com	NA
		

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web

ase refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS ENVIRONMENTAL

Client:

Washington State Department of Ecology

Service Request No.:

K1210496

Project:

Frontier Hardchrome

Date Received:

10/17/12

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

One water sample was received for analysis at ALS Environmental on 10/17/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Chain of Custody

Colembia Analytical Service	*AC*	С	HAIN	OF C	O T	OD	Y						SR	#:	<12	196
1317 Sout	th 13th Ave, Kelso, WA	98626 36	60.577.7222	800.695.	7222 3	60.636.	1068 (fax	()	Р	AGE		OF	_/		COC#	
PROJECT NAME FRONTIER HA	PERMET / BRITIN POF ECOLOGY	every /westo	CONTAINERS	Sal	obelow) BTEX	//	SGR CONGENERS	81511	,	Cyanide Cyanide	No Cong. Ci. So.	3.N. COD 155, 1059, F. NO. COLOGO 2.	40x 16c.	2000		REMARKS
i i		willing				1		7		·v-		+		f	-	24-HOLD TM
1210057-13 10/17/12																
DEDOOT DECLUDENES	INVOICE INFOR	RMATION	Circle whic	h metals are to	be analyze	ed:								LL		
I. Routine Report: Method Blank, Surrogate, as required II. Report Dup., MS, MSD as required III. Data Validation Report (includes all raw data) IV. CLP Deliverable Report V. EDD	P.O. # Bill To: TURNAROUND RE 24 hr. 5 Day Standard (10-15) Provide FAX Re	48 hr. 5 working days	Total Me Dissolved M *INDICAT S SPECIAL)	etals: AI As etals: AI As E STATE H' INSTRUCTI	Sb Ba I Sb Ba YDROCAF ONS/COM	Be B Ca Be B C RBON P	a Cd C	Oo Cr (Cu Fe	Pb N	ng Mn NORT	Mo Ni HWEST	K Ag	Na S	e Sr T	TI Sn V Zn Hg
RELINQUISHED BY: Colif 12 Signature Date/Time Brian P. Reilly Western Brinted Name Firm	Sign		CEIVED BY:		45	Signature	RELIN	NQUISH			eck bo	Sign	ature	REC		BY: (345) 15/17/13 ate/Time AC)

PC 12

Cooler Receipt and Preservation Form

Samples were received via? Mail Fed Ex UPS DHL PDX GORFIE Hand Delivered Samples were received in: (circle) Coder Box Envelope Other NA Were custody seals on coolers? NA Y N If yes, how many and where? If present, were custody seals intact? Y N If present, were they signed and dated? Y N Taw Corr. Raw Corr. Corr. Thermometer ID Tracking Number ID Tr	ient / Pro	ojec t: ₩ℓ	Stora h	ADOC			-	1			equest <i>I</i>		104	94			(
Samples were received in: (circle) Coder Box Envelope Other NA Were custody seals on coolers? NA Y N If yes, how many and where? If present, were custody seals intact? Y N If present, were they signed and dated? Y N Were Corr. Forty Blank Blank Feyctor Temp Blank Blank Forty Blank Forty Packing material: Inserts Baggies Bubble Wrap Cel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Indicate in the table below. Were all sample labels cangle (i.e. analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Were appropriate bottles/containers and volumes received for the tests indicated? NA ON Were the pH-preserved bottles (see SMO GEN SOF) received at the appropriate pH? Indicate in the table below Were VOA vials received without headspace? Indicate in the table below. Sample ID on Bottle Sample ID on Bottle Sample ID on Bottle Time NA Y N If yes, how many and where? If yes, how many and where the psigned and dated? Y N NA Y N Were the ph-preserved bottles of the tests indicated? NA Y N Were the pH-preserved bottles of the tests indicated? NA Y N Were the pH-preserved bottles (see SMO GEN SOF) received at the appropriate pH? Indicate in the table below Y N Were VOA vials received without headspace? Indicate in the table below. Sample ID on Bottle Sample ID on Bottle Sample ID on Bottle Tremp space Bottle Forty Factor Thermoneter Cooler/COC ID Tracking Number Tracking Number In Tracking Numb					, ,		• •						10/17/1	_ ⊘ By:		K	£
If present, were custody scals intact? Y N If present, were they signed and dated? Y N N Were Corr. Raw Corr. Factor In 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Samples	s were rece	ived in: (cii	rcle) (Cooler	В	ox	Enve	lope	0	ther		and Delivered	!	NA		
Temp Blank Blank Factor ID ID ID ID ID ID ID I		•			NA			11					nd dated?		Y		N
Packing material: Inserts Baggies Bublic Wrap Cel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? NA P Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA P NA		Temp			_	r	ID		Cool	er/COC	_	····	Tracking h	Numbe	er	(A)	Fil
Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Indicate in the table below. Were all sample labels complete (i.c analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Were appropriate bottles/containers and volumes received for the tests indicated? Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Were VOA vials received without headspace? Indicate in the table below. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Identified by: Initials Time Sample ID NA NA	3	3.3	2-9	2.9	Ø	3	287	1						-			
Did all bottles arrive in good condition (unbroken)? Indicate in the table below. Were all sample labels complete (i.e analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Were appropriate bottles/containers and volumes received for the tests indicated? Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Were VOA vials received without headspace? Indicate in the table below. Was C12/Res negative? Sample ID on Bottle Sample ID on COC identified by: Time Sample ID on Bottle Sample ID on COC identified by: Initials Time	_						_	Packs	Wet I	e Di	ry Ice	Sleeves					
Were all sample labels complete (i.e analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA						•	•	in tha t	ahla ha	low							N
Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Were appropriate bottles/containers and volumes received for the tests indicated? Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Were VOA vials received without headspace? Indicate in the table below. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on Gottle Sample ID			_			-			ivie ve	iow.					Ã		N N
Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Were VOA vials received without headspace? Indicate in the table below. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Identified by: Sample ID on Bottle Sample ID on Bottle Sample ID on COC Identified by: Initials Time		=	-	·				•	ajor di	screpa	incies in	the table	on page 2.				N
Was C12/Res negative? Sample ID on Bottle Sample ID on COC Identified by: Sample ID on Bottle Sample ID on COC Sample ID on COC Sample ID on COC Identified by: Sample ID on Bottle Sample ID on COC Identified by: Sample ID on COC Sample ID on COC Identified by: Sample ID on COC Sample ID on COC Sample ID on COC Identified by:			_	-	_				-	-				NA	~		N
Sample ID on Bottle Sample ID on COC Identified by: Sample ID on Bottle Sample ID on Bottle Sample ID on Bottle Sample ID on COC Identified by: Sample ID on Bottle Sample ID on Bottle Sample ID on COC Identified by: Initials Time	Were th	ne pH-prese	erved bottle	s (see SMC	GEN SOI	P) rece	ived at	the ap	propria	te pH?	Indicate	e in the to	ible below		Y		N
Sample ID on Bottle Sample ID on COC Identified by: Bottle Count Out of Head- Sample ID Bottle Type Temp space Broke pH Reagent Added Number Initials Time	Were V	OA vials r	eceived wit	hout head	space? In	idicate	in the	table b	elow.					(VA)	Y		N
Bottle Count Out of Head-Sample ID Bottle Type Temp Space Broke pH Reagent added Number Initials Time	Was C1	2/Res nega	ative?											NA	Y		N
	子 5 英文·				Count	Out of	Head-					Volume	Reagent Lo	ot .			2 2
es, Discrepancies, & Resolutions:	The Mark St.	Sample ID		Bottle	Туре	Temp	space	Broke	рН	Rea	agent	added	Number		Initials	Time	3 93
es, Discrepancies, & Resolutions:																·	-
es, Discrepancies, & Resolutions:												-					
es, Discrepancies, & Resolutions:				 													-
es, Discrepancies, & Kesolunons:	ac D:-		0 D					•	ļ							-	
	es, Disc	repancies	, & Kesoli	utions:									.	_			
					- ASS 21 34S												
		 			A 1975 A 12	*** F#	ಬ ಸಾತ್ರಕ್ಕ	en:80									

Page____of___

General Chemistry Parameters

COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group

Analytical Report

Client: Washington State Department of Ecology

FRONTIER HARDCHROME/1210057

Service Request: K1210496 Date Collected: 10/17/12

Date Received: 10/17/12

mple Matrix: Analysis Method: 7196A

eject:

Water

Units: mg/L

Basis: NA

Chromium, Hexavalent

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
1210057-13	K1210496-001	ND U	0,050	0.004	1	10/18/12 09:30	
Method Blank	K1210496-MB	ND U	0.050	0.004	1	10/18/12 09:30	

Now part of the ALS Group

QA/QC Report

Client:

Washington State Department of Ecology

Service Request:

K1210496

Project

FRONTIER HARDCHROME/1210057

Date Collected:

10/17/12

Sample Matrix:

Water

Date Received:

10/17/12

10/18/12

Date Analyzed:

Replicate Sample Summary

General Chemistry Parameters

Sample Name:

1210057-13

Units: mg/L

Lab Code:

K1210496-001

NA Basis:

Duplicate Sample

K1210496-

Analysis

Sample Result

001DUP

Method

MRL MDL 0.004

Average

RPD

RPD Limit

Analyte Name Chromium, Hexavalent

7196A

0.050

ND

Result ND

NC

NC

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Fercent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/19/2012 11:10:12 AM

Superset Reference: 12-0000227726 rev 00

12

Now part of the ALS Group

QA/QC Report

nt:

Washington State Department of Ecology

Service Request: K1210496

Project:

FRONTIER HARDCHROME/1210057

Date Collected: 10/17/12
Date Received: 10/17/12

Sample Matrix:

Water

Date Analyzed: 10/18/12

Duplicate Matrix Spike Summary Chromium, Hexavalent

Sample Name:

1210057-13

Units: mg/L

Lab Code:

K1210496-001

Basis: NA

Analysis Method:

7196A

Matrix Spike

Duplicate Matrix Spike

K1210496-001MS

K1210496-001DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Chromium Hexavalent	ND	0.350	0.400	88	0.352	0.400	88	75-125	<1	20

alts flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Superset Reference: 12-0000227726 rev 00

Now part of the ALS Group

QA/QC Report

Client:

Washington State Department of Ecology

Project:

FRONTIER HARDCHROME/1210057

Service Request: K1210496

Sample Matrix:

Water

Date Analyzed: 10/18/12

Lab Control Sample Summary

Chromium, Hexavalent

Analysis Method:

7196A

Units: mg/L

Basis: NA

Analysis Lot: 314513

Spike % Rec Sample Name Lab Code Amount Result % Rec Limits Lab Control Sample K1210496-LCS 0.755 0.742 102 80-120

Now part of the ALS Group

QA/QC Report

ent:

Washington State Department of Ecology FRONTIER HARDCHROME/1210057

Service Request: K1210496

Continuing Calibration Verification (CCV) Summary

Chromium, Hexavalent

Analysis Method:

7196A

Units: mg/L

	Analysis Lot	Lab Code	Date Analyzed	Truc Valuc	Measured Value	Percent Recovery	Acceptance Limits
CCVI	314513	KQ1212311-05	10/18/12 09:30	0.500	0.529	106	90-110
CCV2	314513	KQ1212311-06	10/18/12 09:30	0.500	0.529	106	90-110

Now part of the ALS Group

QA/QC Report

Client:

Washington State Department of Ecology

Project:

FRONTIER HARDCHROME/1210057

Service Request: K1210496

Continuing Calibration Blank (CCB) Summary

Chromium, Hexavalent

Analysis Method:

7196A

Units: mg/L

	Analysis		Date				
	Lot	Lab Code	Analyzed	MRL	MDL	Result	Q
CCBI	314513	KQ1212311-03	10/18/12 09:30	0.050	0,004	ND	U
CCB2	314513	KQ1212311-04	10/18/12 09:30	0.050	0.004	ND	U

Work Request #	+ CELLY YOU	
Tier.	Ĭv	
-	16/18/12	
Date Analyzed:		or in
Analyst	IF RUN-1 3/4	1/3
Analysis:	Cr6 (719/A)	· · · · ·
	DATA QUALITY REPORT INORGANICS	
Explain any "no	" responses to questions below, and any corrective actions in the co	mments section below.
	method name and number correct and appropriate?	
		yzs/no/NA
• .	diculations correct?	yes/no/NA
•	reporting basis correct? (Dry Weight)	(yzs/no/NA
	ality control criteria met?	yes/no/NA
		yes/no yes/no/NA
	CCVs, CCBs, LCSs, Dups, and Spikes, analyzed at proper	yes/no/NA
- ·	CVs, CCVs, and CCBs all within acceptance limits?	yes/no/NA
	sults for methods blanks all ND?	yes/no/NA
10. Are all	I QC samples within acceptance criteria? % rec, MS/DMS % rec, DUP or MS/DMS RPDs, etc.)	yes/no/NA
.*	1 exceptions explained?	yes/no(NA)
12. Have a	all applicable service requests been reviewed?	yes/no/NA
	Il samples labeled correctly?	yes/no/NA
	all instructions on the service request been followed? Special MRLs, QC on a specific sample, Form V)	yes/no/NA
15. Are de	etection limits and units reported correctly?	yeş/no/NA
16. Is the	unused space on the benchsheet crossed out?	yes/ng/NA)
17. Was a	analysis turned in by the due date? (n-2) (If not record SR#)	ves/no/NA
COMMENTS:	}:	
		·. ·
•		
• •		
T:1 4	· · · · · · · · · · · · · · · · · · ·	(61.2
Final Approved	d by:Date:	8/12

DOREPORT

Analytical Results Summary

Instrument Nar	ne: K-DAA-01	Analyst: IFRANKS	Analysis	Lot: 314513 Method/Testcode: 7196A/Cr6
ab Code 1210496-001 Q1212314-01 Q1212311-02	Target Analytes OC Chromium, Hexavalent MB Chromium, Hexavalent LCS	Parent Sample Matrix Water Water Water	Raw Result Sample Amt. 0 00 mg/L 50 mL -0 01 mg/L 50 mL 0.75 mg/L 50 mL	Cinal Result Dil MDL PQL % Rec % RSD Date Analyzed QC? Tier 0.050 mg/L U 1 0.004 0.050 10/18/12 09.30.00 N IV 0.755 mg/L 1 0.004 0.050 102 10/18/12 09.30.00 N IV
Q1212311-03	Chromium, Hexavalent CCB	Water	-0.01 mg/L 50 mL	0.050 mg/L U 1 0.004 0.050 10/18/12 09:30:00 N IV 0.050 mg/L U 1 0.004 0.050 10/18/12 09:30:00 N IV 0.529 mg/L 1 10/18/12 09:30:00 N IV
Q1212311-04	Chromium, Hexavalent CCB	Water	0.00 mg/L 50 mL	
Q1212311-05	Chromium, Hexavalent CCV	Water	0.53 mg/L 50 mL	
Q1212311-06	Chromium, Hexavalent CCV	Water	0.53 mg/L 50 mL	0.529 mg/L 1
Q1212311-07	Chromium, Hexavalent MS	K1210496-001 Water	0.35 mg/L 50 mL	
Q1212311-08	Chromium, Hexavalent DMS	K1210496-001 Water	0.35 mg/L 50 mL	

50 mL

0.050 mg/L U 1

0.004 0.050

0.00 mg/L

10/18/W Jan/10/18/12

10/18/12 09:30:00 N

ΙV

Chromium, Hexavalent DUP

K1210496-001

Water

Q1212311-09

ALS- Environmental

1317 S 13th Kelso WA 98626

Phone: (360) 577-7222

	Method: WCR6	-Unit r	ng/L - (Cr6+ 0.05 to 1.0 mg	y/1 SM 3500 -Cr-B
Smp#/[Dil Fact]	Sample ID	Conc	OD	%Recovery/RPD	Analysis Time
DIL-1	RBL	0.0000	0.0003	0.00	9:29:46
DIL-1	RBL	0.0000	0.0004	0.00	9:30:04
ST-3 Cen	3CCB (0 mg/L)	-0.0057	-0.0004	0.00	9:30:22
ST-2 Cevi	3CCV (0.5 mg/L)	0.5291	0.3169	105.82	9:30:40
1	MB	-0.0057	-0.0004	0.00	9:30:58
2	LCS	0.7549	0.4508	0.00	9:31:16
3	K1210496-001	-0.0049	0.0002	0.00	9:31:34
4	K1210496-001D	-0.0046	0.0004	0.00	9:31:52
5	K1210496-001MS	0.3504	0.2109	0.00	9:34:34
6	K1210496-001DMS	0.3519	0.2118	0.00	9:34:52
7-[1/10]	K1210496-001-DIL	-0.0470	0.0003	0.00	9:35:10 ₇
8-[1/10]	K1210496-001D-DIL	-0.0490	0.0002	0.00	9:35:28 L NN
9-[1/10]	K1210496-001MS-DIL	2.1780	0.1323	0.00	9:35:46
10-[1/10]	K1210496-001DMS-DIL	2.1970	0.1334	0.00	9:36:04
SJ-3 COp,	3CCB (0 mg/L)	-0.0049	0.0002	0.00	9:36:22

0.5288

0.3167 105.76

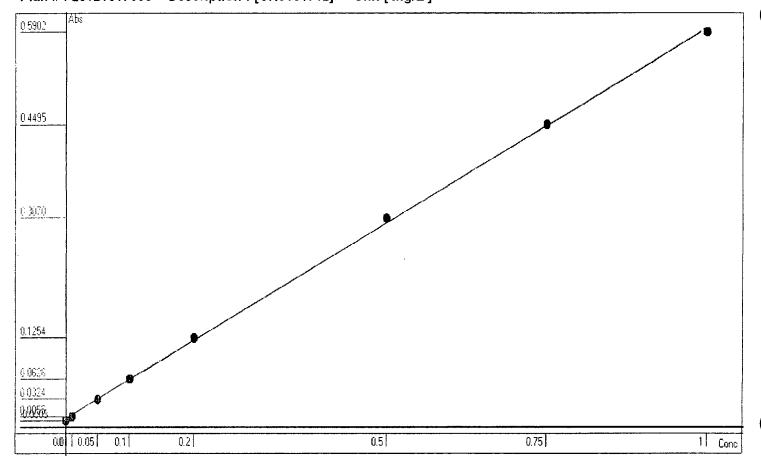
Jer/10/18/12

9:36:40

Report Date :10/18/2012 Run Date :10/18/2012

Operator: WESTCO

Plan # :20121018002


Plan Description: CR6 101812

Cet 2 3CCV (0.5 mg/L)

Calibrant Report - WCR6 -

l# 10/18/n Cnb

Calib Lot #:Cr6+ Exp Date:12/12/2012 User:CAS-GEN CHEM Unit [mg/L] Plan #: 20121017005 Description: [CR6101712]

Point	OD Conc		Recalc Conc	% Erroi
1	-0.0003	0	-0.0057	-0.57
2	0.0055	0.01	0.0041	-59.00
3	0.0324	0.05	0.0494	-1.20
4	0.0626	0.1	0.1004	0.40
5	0.1254	0.2	0.2062	3.10
6	0.3070	0.5	0.5125	2.50
7	0.4495	0.75	0.7527	0.36
8	0.5902	1	0.9900	-1.00
2*Abso -0.005	2 R ² =0.9996			RBL

Report Date 10/17/2012 Run Date 7/16/2012

Jan 110118112

STARLIMS RUN	# 314513	Method: 7196A
Analysis <u>Cr6</u>		

LCS ID:	Gen-Cr6/2-9-R	T.V.= 0.742
CURVE ID:	Gen -Cr6/2-16-FF	
CCV ID:	Gen-Cr6/2-27-T	T.V.=0.50ppm
Spike ID.	Gen-Cr6/2-5-O	TV $MS/DMS = 0.40 PPM$
0.2N H2SO	4 ID : Gen-Cr6/2	-51-B
DiphenylCar	rbazide Solution ID	Gen-Cr6/2-81-K
PALL - GN	-6 0 45um 47mm FI	T12717
Pipette ID: 1	39246, 2011155, 3610	442
Equipment I	D: K-DAA-01	

Analyzed By: H	Date Analyzed: 10/18/2012	
Reviewed By:	Date Reviewed: 10/18/12	

Manchester Environmental Laboratory

7411 Beach Drive E, Port Orchard, Washington 98366

Case Narrative

October 29, 2012

Project:

General Chemistry Frontier Hardchrome-2012

Work Order: 1210057

Project

Manager:

Barrett, Guy

By:

Dean Momohara

Summary

The laboratory analyzed the samples following EPA 300.0 for sulfate.

All analyses requested were evaluated by established regulatory quality assurance guidelines.

Sample Information

The samples were received at the Manchester Laboratory on 10/23/2012. The coolers were received within the proper temperature range of 0°C - 6°C. The samples were received in good condition. Five samples were received and assigned laboratory identification numbers 03, 04, 06, 11 and 13.

Holding Times

The laboratory performed all analyses within their hold times.

Calibration

The instrument was calibrated following the appropriate method. All initial and continuing calibration verification checks were within the acceptance limits. All initial and continuing blank checks were within the acceptance limits. The r-value was within the acceptance limits. All standard residuals were within acceptance limits. The instrument was calibrated with NIST traceable standards and verified to be in calibration with second source NIST traceable standards.

Method Blanks

No analytically significant level of analyte was detected in the method blank associated with these samples.

Laboratory Control Samples

The laboratory control sample recovery was within the acceptance limits.

Replicates

The duplicate relative percent difference of samples with concentrations greater than 5 times the reporting limit was within the acceptance limits.

Matrix Spikes

The matrix spike recovery was within the acceptance limits.

Other Quality Assurance Measures and Issues

U - The analyte was not detected at or above the reported result.

bold - The analyte was present in the sample. (Visual Aid to locate detected compounds on report sheet.)

Please call Dean Momohara at (360) 871-8808 to further discuss this project.

cc: Project File

Washington State Department of Ecology Manchester Environmental Laboratory Final Analysis Report for Sulfate

Project Name: Frontier Hardchrome-2012

Project Officer:	Order: 1210057 Analyte: Sulfate t Officer: Barrett, Guy Method: EPA300.0 collected: 10/16/2012 Date Analyzed: 10/25/2012			Matrix: W Units: m	-		
Sample #	Sample ID	Result Qualifier	RL	MDL	Collected	Analyzed	Batch ID
1210057-03	W85-6A	22.2	0.30	0.10	10/16/12	10/25/12	B12J164
1210057-04	QA-1	22.1	0.30	0.10	10/16/12	10/25/12	B12J164
1210057-06	W99-R5A	14.6	0.30	0.10	10/16/12	10/25/12	B12J164
1210057-11	B85-4	54.9	0.30	0.10	10/17/12	10/25/12	B12J164
1210057-13	B87-8	62.5	0.60	0.19	10/17/12	10/25/12	B12J164

QC Results for Batch ID: B12J164

Method Blank	Sample ID	Result	Qualifer	RL	MDL	· .	Analyze	d	
B12J164-BLK1	Blank	0.30	U	0.30	0.10		10/25/1	2	
Sample #	QC Sample	Resuit	Spik Leve		Source Result	%Rec	%Rec Limits	RPD	RPD Limit
B12J164-BS1	LCS	4.93	5			99	90-110		
B12J164-DUP1	Duplicate	22.1		1210057-0	3 22.2			0.3	20
B12J164-MS1	Matrix Spike	27.2	5	1210057-0	4 22.1	103	75-125		

Authorized by:	Dr	Release Date:	10/29/2	Page 1 of 1
		•		10/29/2012

ANALYTICAL REPORT

Job Number: 580-35682-1

Job Description: Frontier Hardchrome 2012

For:

Washington State Dept of Ecology Manchester Environmental Laboratory 7411 Beach Drive East Port Orchard, WA 98366

Attention: Ms. Karin Feddersen

Kristine D. aller

Approved for release Kristine Allen Project Manager I 11/14/2012 4:08 PM

Kristine Allen
Project Manager I
kristine.allen@testamericainc.com
11/14/2012

TestAmerica Tacoma is a part of TestAmerica Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

This report shall not be reproduced except in full, without prior express written approval by the laboratory. The results relate only to the item(s) tested and the sample(s) as received by the laboratory.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan and meet all requirements of NELAC. All data have been found to be compliant with laboratory protocol, with the exception of any items noted in the case narrative.

TestAmerica Seattle 5755 8th Street East, Tacoma, WA 98424
Tel (253) 922-2310 Fax (253) 922-5047 www.testamericainc.com

Table o Contents

Cover Title Page	1
Data Summaries	4
□eport Narrative	4
Sample Summary	5
Executive Summary	6
Method Summary	7
Method / Analyst Summary	8
Sample Datasheets	9
QC Data Summary	13
Data Qualifiers	15
QC Association Summary	16
Lab Chronicle	17
□eagent Traceability	19
Certification Summary	22
Inorganic Sample Data	23
Metals Data	23
Met Cover Page	24
Met Sample Data	25
Met QC Data	29
Met IC⊡/CC□	29
Met C□QL	31
Met Blanks	32
Met ICSA/ICSAB	36
Met LCS/LCSD	44
Met MDL	46
Met Preparation Log	48

Table o Contents

Met Analysis	50
Met □aw Data	55
Met Prep Data	377
Subcontracted Data	380
Shipping and □eceiving Documents	381
Client Chain of Custody	382
Sample □eceipt Checklist	383

CASE NARRATIVE

Client: Washington State Dept of Ecology Project: Frontier Hardchrome 2012 Report Number: 580-35682-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) resulting from a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are an unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes within the calibration range of the instrument or that reduces the interferences thereby enabling the quantification of target analytes.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 10/26/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.8 C.

The sample collection dates and times were not listed on the COC; samples were logged in per container labels for sample dates and times

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

TOTAL METALS (ICP)

Samples 1210057-03 (580-35682-1), 1210057-06 (580-35682-2), 1210057-11 (580-35682-3) and 1210057-13 (580-35682-4) were analyzed for total metals (ICP) in accordance with EPA Method 200.7. The samples were prepared and analyzed on 11/01/2012 and 11/08/2012.

No difficulties were encountered during the metals analyses.

All quality control parameters were within the acceptance limits.

SAMPLE SUMMARY

Client: Washington State Dept of Ecology

			Date/Time	Date/Time	
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received	
580-35682-1	1210057-03	Water	10/16/2012 0910	10/26/2012 0950	
580-35682-2	1210057-06	Water	10/16/2012 1215	10/26/2012 0950	
580-35682-3	1210057-11	Water	10/17/2012 0850	10/26/2012 0950	
580-35682-4	1210057-13	Water	10/17/2012 1030	10/26/2012 0950	

Job Number: 580-35682-1

EXECUTIVE SUMMARY - Detections

Client: Washington State Dept of Ecology

Job Number: 580-35682-1

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
580-35682-1 Sulfur	1210057-03	7.9		0.50	mg/L	200.7 Rev 4.4
580-35682-2 Sulfur	1210057-06	5.1		0.50	mg/L	200.7 Rev 4.4
580-35682-3 Sulfur	1210057-11	20		0.50	mg/L	200.7 Rev 4.4
580-35682-4 Sulfur	1210057-13	22		0.50	mg/L	200.7 Rev 4.4

METHOD SUMMARY

Client: Washington State Dept of Ecology

Job Number: 580-35682-1

Description	Lab Location	Method	Preparation Method	
Matrix: Water				
Metals (ICP)	TAL NSH	EPA 200.7 R	ev 4.4	
Preparation, Total Metals	TAL NSH		EPA 200.7	

Lab References:

TAL NSH = TestAmerica Nashville

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Washington State Dept of Ecology

Job Number: 580-35682-1

 Method
 Analyst
 Analyst ID

 EPA 200.7 Rev 4.4
 Bydalek, Beth
 bb

Client: Washington State Dept of Ecology Job Number: 580-35682-1

Client Sample ID: 1210057-03

580-35682-1 Lab Sample ID:

Client Matrix:

Water

Date Sampled: 10/16/2012 0910

Date Received: 10/26/2012 0950

200.7 Rev 4.4 Metals (ICP)

Analysis Method:

200.7 Rev 4.4

Prep Method:

200.7

Dilution:

Analysis Date:

Prep Date:

1.0 11/01/2012 1414

11/01/2012 0640

Analysis Batch:

7.9

Prep Batch:

490-32866

490-32518

Lab File ID:

Instrument ID:

ICP6

TALS_110112-6A.asc

Initial Weight/Volume:

50 mL

Final Weight/Volume:

50 mL

Analyte

Result (mg/L)

Qualifier

RL

Sulfur

Client: Washington State Dept of Ecology

Job Number: 580-35682-1

Client Sample ID:

1210057-06

Lab Sample ID:

580-35682-2

Client Matrix:

Water

Date Sampled: 10/16/2012 1215

Date Received: 10/26/2012 0950

200.7 Rev 4.4 Metals (ICP)

Analysis Method:

200.7 Rev 4.4

Prep Method:

200.7

Dilution:

Analysis Date:

Prep Date:

1.0

11/01/2012 1417

11/01/2012 0640

Analysis Batch: Prep Batch:

490-32866

490-32518

Instrument ID:

Lab File ID:

ICP6 TALS_110112-6A.asc

Initial Weight/Volume:

50 mL

Final Weight/Volume:

50 mL

Analyte

Result (mg/L)

Qualifier

RL

Sulfur

Client: Washington State Dept of Ecology

Job Number: 580-35682-1

Client Sample ID:

1210057-11

Lab Sample ID:

580-35682-3

Client Matrix:

Water

Date Sampled: 10/17/2012 0850

Date Received: 10/26/2012 0950

200.7 Rev 4.4 Metals (ICP)

Analysis Method: Prep Method:

200.7 Rev 4.4

200.7

Dilution:

Analysis Date:

Prep Date:

11/01/2012 0640

11/01/2012 1421

490-32866 490-32518

Instrument ID:

Lab File ID:

ICP6

TALS_110112-6A.asc

Initial Weight/Volume: Final Weight/Volume:

50 mL

50 mL

Analyte Sulfur

Result (mg/L)

Qualifier

RL

Analysis Batch:

Prep Batch:

Client: Washington State Dept of Ecology

Job Number: 580-35682-1

Client Sample ID:

1210057-13

Lab Sample ID:

580-35682-4

Client Matrix:

Water

Date Sampled: 10/17/2012 1030

Date Received: 10/26/2012 0950

200.7 Rev 4.4 Metals (ICP)

Analysis Method:

200.7 Rev 4.4

Prep Method:

200.7

Dilution:

1.0

Analysis Date:

Prep Date:

11/08/2012 1150

11/08/2012 0710

Analysis Batch: Prep Batch:

490-34611

490-34375

Instrument ID:

ICP6

Lab File ID:

TALS_110812-6RUSH

Initial Weight/Volume:

50 mL

Final Weight/Volume:

50 mL

Analyte

Result (mg/L)

Qualifier

RL

Sulfur

22

Quality Control Results

Client: Washington State Dept of Ecology

Job Number: 580-35682-1

Method Blank - Batch: 490-32518

Method: 200.7 Rev 4.4 Preparation: 200.7

Lab Sample ID:

MB 490-32518/1-A

Water

Client Matrix: Dilution:

1.0

Analysis Date:

11/01/2012 1339

Prep Date:

11/01/2012 0640

Leach Date:

N/A

Analysis Batch:

Units:

490-32866 490-32518

Prep Batch: Leach Batch:

mg/L

N/A

Instrument ID: Lab File ID:

ICP6 TALS_110112-6A.asc

Initial Weight/Volume:

50 mL

Final Weight/Volume:

50 mL

Analyte

Result

Qual

RL

Sulfur

0.50

ND

Method: 200.7 Rev 4.4

Preparation: 200.7

Lab Sample ID:

LCS 490-32518/2-A

Lab Control Sample - Batch: 490-32518

Client Matrix:

Water

Dilution:

1.0

Analysis Date:

Prep Date:

11/01/2012 1342 11/01/2012 0640

Leach Date:

N/A

Analysis Batch:

Prep Batch:

Leach Batch:

Units:

1.00

490-32866 490-32518

> N/A mg/L

Instrument ID:

ICP6

Lab File ID:

TALS_110112-6A.asc

Initial Weight/Volume:

50 mL

Final Weight/Volume: 50 mL

Analyte Sulfur

Spike Amount

Result

1.06

% Rec.

106

Limit

Qual

85 - 115

Quality Control Results

Job Number: 580-35682-1 Client: Washington State Dept of Ecology

Method Blank - Batch: 490-34375 Method: 200.7 Rev 4.4

Preparation: 200.7

Analysis Batch: 490-34611 Instrument ID: ICP6 Lab Sample ID: MB 490-34375/1-A

Lab File ID: TALS_110812-6RUSHB Prep Batch: 490-34375 Client Matrix: Water

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL 11/08/2012 1054 Units: mg/L Final Weight/Volume: 50 mL Analysis Date:

11/08/2012 0710 Prep Date:

Result Qual RL Analyte

0.50 Sulfur ND

Method: 200.7 Rev 4.4 Lab Control Sample - Batch: 490-34375 Preparation: 200.7

Leach Date:

N/A

LCS 490-34375/2-A Analysis Batch: 490-34611 Instrument ID: ICP6

Lab Sample ID: Lab File ID: TALS_110812-6RUSHB Prep Batch: 490-34375 Client Matrix: Water

Leach Batch: N/A Initial Weight/Volume: 50 mL Dilution: 1.0

11/08/2012 1058 Final Weight/Volume: 50 mL Analysis Date: Units: mg/L 11/08/2012 0710

Prep Date: Leach Date: N/A

Quai % Rec. Limit Analyte Spike Amount Result Sulfur 1.00 1.11 111 85 - 115

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Washington State Dept of Ecology

Job Number: 580-35682-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 490-32518					
LCS 490-32518/2-A	Lab Control Sample	Т	Water	200.7	
MB 490-32518/1-A	Method Blank	Т	Water	200.7	
580-35682-1	1210057-03	Т	Water	200.7	
580-35682-2	1210057-06	T	Water	200.7	
580-35682-3	1210057-11	Т	Water	200.7	
Analysis Batch:490-32866	3				
_CS 490-32518/2-A	Lab Control Sample	Т	Water	200.7 Rev 4.4	490-32518
MB 490-32518/1-A	Method Blank	Т	Water	200.7 Rev 4.4	490-32518
580-35682-1	1210057-03	Т	Water	200.7 Rev 4.4	490-32518
580-35682-2	1210057-06	Т	Water	200.7 Rev 4.4	490-32518
580-35682-3	1210057-11	Т	Water	200.7 Rev 4.4	490-32518
Prep Batch: 490-34375					
LCS 490-34375/2-A	Lab Control Sample	Т	Water	200.7	
MB 490-34375/1-A	Method Blank	Т	Water	200.7	
580-35682- 4	1210057-13	Т	Water	200.7	
Analysis Batch:490-34611					
LCS 490-34375/2-A	Lab Control Sample	T	Water	200.7 Rev 4.4	490-34375
MB 490-34375/1-A	Method Blank	Т	Water	200.7 Rev 4.4	490-34375
580-35682 -4	1210057-13	Т	Water	200.7 Rev 4.4	490-34375

Report Basis

T = Total

Job Number: 580-35682-1

Client: Washington State Dept of Ecology

Laboratory Chronicle

Lab ID:

580-35682-1

Client ID: 1210057-03

Sample Date/Time:

10/16/2012 09:10

Received Date/Time:

10/26/2012 09:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:200.7	580-35682-A-1-A		490-32866	490-32518	11/01/2012 06:40	1	TAL NSH	SR
A:200.7 Rev 4.4	580-35682-A-1-A		490-32866	490-32518	11/01/2012 14:14	1	TAL NSH	bb

Lab ID:

580-35682-2

Client ID: 1210057-06

Sample Date/Time: 10/16/2012 12:15

Received Date/Time:

10/26/2012 09:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:200.7	580-35682-A-2-A		490-32866	490-32518	11/01/2012 06:40	1	TAL NSH	SR
A:200.7 Rev 4.4	580-35682-A-2-A		490-32866	490-32518	11/01/2012 14:17	1	TAL NSH	bb

Lab ID:

580-35682-3

Client ID: 1210057-11

Sample Date/Time: 10/17/2012 08:50

Received Date/Time:

10/26/2012 09:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:200.7	580-35682-A-3-A		490-32866	490-32518	11/01/2012 06:40	1	TAL NSH	SR
A:200.7 Rev 4.4	580-35682-A-3-A		490-32866	490-32518	11/01/2012 14:21	1	TAL NSH	bb

Lab ID:

580-35682-4

Client ID: 1210057-13

Sample Date/Time:

10/17/2012 10:30

Received Date/Time:

10/26/2012 09:50

N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:200.7	580-35682-A-4-A		490-34611	490-34375	11/08/2012 07:10	1	TAL NSH	SR
A:200.7 Rev 4.4	580-35682-A-4-A		490-34611	490-34375	11/08/2012 11:50	1	TAL NSH	bb

Lab ID:

MB

Client ID: N/A

Sample Date/Time: N/A

Received Date/Time:

		Analysis		Date Prepared /				
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:200.7	MB 490-32518/1-A		490-32866	490-32518	11/01/2012 06:40	1	TAL NSH	SR
A:200.7 Rev 4.4	MB 490-32518/1-A		490-32866	490-32518	11/01/2012 13:39	1	TAL NSH	bb
P:200.7	MB 490-34375/1-A		490-34611	490-34375	11/08/2012 07:10	1	TAL NSH	SR
A:200.7 Rev 4.4	MB 490-34375/1-A		490-34611	490-34375	11/08/2012 10:54	1	TAL NSH	bb

Quality Control Results

Job Number: 580-35682-1

Client: Washington State Dept of Ecology

Laboratory Chronicle

Lab ID: LCS

Client ID: N/A

Sample Date/Time: N/A

Received Date/Time:

N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:200.7	LCS 490-32518/2-A		490-32866	490-32518	11/01/2012 06:40	1	TAL NSH	SR
A:200.7 Rev 4.4	LCS 490-32518/2-A		490-32866	490-32518	11/01/2012 13:42	1	TAL NSH	bb
P:200.7	LCS 490-34375/2-A		490-34611	490-34375	11/08/2012 07:10	1	TAL NSH	SR
A:200.7 Rev 4.4	LCS 490-34375/2-A		490-34611	490-34375	11/08/2012 10:58	1	TAL NSH	bb

Lab References:

TAL NSH = TestAmerica Nashville

Lab Name: TestAmerica Nashville Job No.: 580-35682-1

SDG No.:

				Reagent	Parent Reagen	t		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
MET 1:1HCL 00002	12/06/12	02/23/12	DI Water, Lot DI Water		MET_HCL_00001		Hydrogen Chloride	50 %
.MET_HCL_00001	12/06/12	Fi	sher Scientific, Lot 41110	10	(Purchased Reage	nt)	Hydrogen Chloride	100 %
MET 1:1HCL 00004	11/01/13	02/23/12	DI Water, Lot DI Water	1000 mL	MET_HCL_00012	500 mL	Hydrogen Chloride	50 %
.MET HCL_00012	11/01/13	Mac	ron Chemicals, Lot 0000013	3500	(Purchased Reage	nt)	Hydrogen Chloride	100 %
MET 1:1HNO3 00002	12/06/12	02/23/12	DI Water, Lot DI Water	1000 mL	MET HNO3 00001	500 mL	Nitric acid	50 %
.MET HNO3 00001	12/06/12	M	lacron Chemicals, Lot K3502	26	(Purchased Reage	nt)	Nitric acid	100 %
MET 1:1HNO3 00005	12/06/12	02/23/12	DI Water, Lot DI Water	1000 mL	MET HNO3 00026	500 mL	Nitric acid	50 %
.MET HNO3 00026	11/01/13	N	Macron Chemicals, Lot K4702	22	(Purchased Reage	ent)	Nitric acid	100 %
MET CCV 00009	01/15/13	·	5% Nitric Acid, Lot 1		MET S STOCK 00003	0.5 mL	Sulfur	1 ppm
.MET_S_STOCK_00003	01/18/14		RONMENTAL EXPRESS, Lot 113		(Purchased Reage		Sulfur	1000 ppm
MET CSTD 0.5 00005		·	5% Nitric Acid, Lot 1		MET S STOCK 00003	0.02 mL		0.5 ppm
MET CSTD 0.5 00005	03/12/13		RONMENTAL EXPRESS, Lot 113		(Purchased Reage		Sulfur	1000 ppm
		L	5% Nitric Acid, Lot 1		MET ICUS-3033 00006	49.5 mL		9.9 ppm
MET CSTD 10.0 00003 .MET ICUS-3033 00006	11/30/14		Oltra Scientific, Lot P0109		(Purchased Reage		Sulfur	10 ppm
		·			MET S STOCK 00003		Sulfur	100 ppm
MET CSTD 100 00003	03/12/13		5% Nitric Acid, Lot 1 RONMENTAL EXPRESS, Lot 113		(Purchased Reage		Sulfur	1000 ppm
.MET_S_STOCK_00003		l						
MET_CSTD_100_00004			5% Nitric Acid, Lot 1		MET_S_STOCK_00003		Sulfur	100 ppm
.MET_S_STOCK_00003	01/18/14		RONMENTAL EXPRESS, Lot 113		(Purchased Reage		Sulfur	1000 ppm
MET_CSTD_2.0_00005			5% Nitric Acid, Lot 1		MET_S_STOCK_00003		Sulfur	2.5 ppm
.MET S STOCK 00003	01/18/14	ENV:	RONMENTAL EXPRESS, Lot 113		(Purchased Reage		Sulfur	1000 ppm
MET_CSTD_50_00003			5% Nitric Acid, Lot 1		MET_S_STOCK_00003		Sulfur	50 ppm
.MET S STOCK 00003	01/18/14	ENV	RONMENTAL EXPRESS, Lot 113		(Purchased Reage	ent)	Sulfur	1000 ppm
MET CSTD 50 00004	03/12/13		5% Nitric Acid, Lot 1		MET_S_STOCK_00003		Sulfur	50 ppm
.MET_S_STOCK_00003	01/18/14	ENV	RONMENTAL EXPRESS, Lot 113	32501	(Purchased Reage	ent)	Sulfur	1000 ppm
MET ICSA 00003	01/15/13	03/14/12	5% Nitric Acid, Lot 1	250 mL	MET_INT-A1_00001	25 mL	Al	500 ppm
_ -		•					Ca	500 ppm
		1					Fe	200 ppm
	24.5.4.6			<u>.l</u>	(5)	<u> </u>	Mg	500 ppm
.MET_INT-A1_00001	01/15/13		Spex, Lot 43-2AS		(Purchased Reage	ent)	Ca	5000 ppm 5000 ppm
							Fe	2000 ppm
							Mq	5000 ppm
	110/20/12	02/14/12	5% Nitric Acid, Lot 1	7 250 mT	MET_INT-A1_00001	25 mL		501 ppm
MET_ICSAB_00003	10/30/12	03/14/12	54 NICHIC ACIG, LOC I	2 30 ML	ME1_INI_AI_00001	25 1115	Ca	500.1 ppm
	1						Fe	200.1 ppm
							Mg	500.1 ppm
		1			MET_INT-B1_00001	2.5 mL	Ag	1 ppm
	1						Ва	0.5 ppm
		1			1		Ве	0.5 ppm
		1				ļ	Cd	1 ppm
		1					Co	0.5 ppm 0.5 ppm
İ		1	1				Cu	0.5 ppm

REAGENT TRACEABILITY SUMMARY

Lab Name: TestAmerica Nashville Job No.: 580-35682-1

SDG No.:

				Reagent	Parent Reage	nt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Mn	0.5 ppm
		ŀ					Ni	1 ppm
						1	Pb	1 ppm
					1		V	0.5 ppm
					†		Zn	1 ppm
					MET_INT-B2_00001	2.5 mL		501 ppm
		İ			1		As	1 ppm
						1	В	1 ppm
							Ca	500.1 ppm
							Fe	200.1 ppm
						1	Mg	500.1 ppm
							Mo	
							Na	1 ppm l
		1				İ	h	
							Sb	1 ppm
							Se	1 ppm
MEM TAIM 31 00001	01/15/12	ļ I	G T. L. 42 03 0		(8 - 1 1 8 1		Tl	1 ppm
.MET_INT-A1_00001	01/15/13		Spex, Lot 43-2AS		(Purchased Read	gent)	Al	5000 ppm
							Ca	5000 ppm
							Fe	2000 ppm
							Mg	5000 ppm
.MET_INT-B1_00001	10/30/12	İ	Spex, Lot 43-33AS		(Purchased Read	gent)	Ag	100 ppm
							Ва	50 ppm
							Ве	50 ppm
							Cd	100 ppm
							Co	50 ppm
							Cr	50 ppm
							Cu	50 ppm
							Mn	50 ppm
							Ni	100 ppm
							Pb	100 ppm
							V	50 ppm
							Zn	100 ppm
.MET_INT-B2_00001	10/30/12		Spex, Lot 43-55AS		(Purchased Read	gent)	Al	100 ppm
			• •		,		As	100 ppm
							В	100 ppm
							Ca	10 ppm
							Fe	10 ppm
							Mg	10 ppm
							Mo	100 ppm
							Na	100 ppm
					1		Sb	100 ppm
							Se	100 ppm
					1		Tl	100 ppm
	10/01/12	L	50 311	T 50 -	Turm a amount conse	1 0 05 -	<u> </u>	
MET_ICV_00013 .MET_S_STOCK_00003	01/18/14		5% Nitric Acid, Lot 1 RONMENTAL EXPRESS, Lot 11		MET S STOCK 00003 (Purchased Read	0.05 mL	Sulfur	1 ppm 1000 ppm
		<u> </u>			·	· 		
MET_lab_CRI_00001	10/11/13		5% Nitric Acid, Lot 00001	50 mL	MET_QC_CRI_00002	5 mL	Sulfur	0.5 ppm

Lab Name:	TestAmerica	Nashville	Job	No.:	580-35682-1

SDG No.:

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
.MET_QC_CRI_00002	10/11/13	10/11/12	5% Nitric Acid, Lot 00001	1000 mL	MET_S_STOCK_00003	5000 uL	Sulfur	5 ppm
MET_S_STOCK_00003	01/18/14	ENVI	RONMENTAL EXPRESS, Lot 11:	32501	(Purchased Rea	gent)	Sulfur	1000 ppm
MET QC CRI2 00005	04/30/13	09/27/13	5% Nitric Acid, Lot 1	50 mL	MET_S_STOCK_00003	0.025 mL	Sulfur	0.5 ppm
.MET_S_STOCK_00003	01/18/14	ENVI	RONMENTAL EXPRESS, Lot 11	32501	(Purchased Rea	gent)	Sulfur	1000 ppm
MET_Spike_A_00005	09/25/13	Envi	ronmental Express, Lot 12:	26804	(Purchased Rea	gent)	Al	200 ppm
	j						As	5 ppm
							В	100 ppm
							Ва	200 ppm
							Ве	5 ppm
							Ca	500 ppm
							Cd	5 ppm
							Со	50 ppm
							Cr	20 ppm
		1					Си	25 ppm
							Fe	100 ppm
							K	500 ppm
							Li	100 ppm
					!		Mg	500 ppm
							Mn	50 ppm
							Na	500 ppm
							Ni	50 ppm
							Pb	5 ppm
							Se	5 ppm
							Sr	100 ppm
							Tl	5 ppm
		[V	50 ppm
							Zn	50 ppm
MET Spike B 00004	09/25/13	Envi	ronmental Express, Lot 12	26805	(Purchased Rea	igent)	Ag	5 ppm
	00,00,00				,	J /	Мо	50 ppm
							Sb	10 ppm
							Sn	100 ppm
							Sulfur	100 ppm
							Ti	100 ppm

Client: Washington State Dept of Ecology Project/Site: Frontier Hardchrome 2012

_aboratory	Authority	Program	EPA Region	Certification ID
estAmerica Nashville		ACIL		393
estAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
estAmerica Nashville	Alabama	State Program	4	41150
estAmerica Nashville	Alaska (UST)	State Program	10	UST-087
estAmerica Nashville	Arizona	State Program	9	AZ0473
estAmerica Nashville	Arkansas DEQ	State Program	6	88-0737
restAmerica Nashville	California	NELAC	9	1168CA
TestAmerica Nashville	Canadian Assoc Lab Accred	Canada		3744
estAmerica Nashville	Colorado	State Program	8	N/A
estAmerica Nashville	Connecticut	State Program	1	PH-0220
estAmerica Nashville	Florida	NELAC	4	E87358
estAmerica Nashville	Illinois	NELAC	5	200010
estAmerica Nashville	lowa	State Program	7	131
estAmerica Nashville	Kansas	NELAC	7	E-10229
estAmerica Nashville	Kentucky	State Program	4	90038
estAmerica Nashville	Kentucky (UST)	State Program	4	19
estAmerica Nashville	Louisiana	NELAC	6	30613
TestAmerica Nashville	Louisiana	NELAC	6	LA120025
estAmerica Nashville	Maryland	State Program	3	316
estAmerica Nashville	Massachusetts	State Program	1	M-TN032
estAmerica Nashville	Minnesota	NELAC	5	047-999-345
estAmerica Nashville	Mississippi	State Program	4	N/A
estAmerica Nashville	Montana (UST)	State Program	8	NA
estAmerica Nashville	Nevada	State Program	9	TN00032
TestAmerica Nashville	New Hampshire	NELAC	1	2963
estAmerica Nashville	New Jersey	NELAC	2	TN965
estAmerica Nashville	New York	NELAC	2	11342
estAmerica Nashville	North Carolina DENR	State Program	4	387
restAmerica Nashville	North Dakota	State Program	8	R-146
estAmerica Nashville	Ohio VAP	State Program	5	CL0033
restAmerica Nashville	Oklahoma	State Program	6	9412
estAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
restAmerica Nashville	Rhode Island	State Program	1	LAO00268
restAmerica Nashville	South Carolina	State Program	4	84009 (001)
restAmerica Nashville	South Carolina	State Program	4	84009 (002)
TestAmerica Nashville	Tennessee	State Program	4	2008
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
estAmerica Nashville	USDA	Federal		S-48469
estAmerica Nashville	Utah	NELAC	8	TAN
estAmerica Nashville	Virginia	NELAC	3	460152
TestAmerica Nashville	Washington	State Program	10	C789
TestAmerica Nashville	West Virginia DEP	State Program	3	219
TestAmerica Nashville	Wisconsin	State Program	5	998020430
restAmerica Nashville	Wyoming (UST)	A2LA	8	453.07

Accreditation may not be offered or required for all methods and analytes reported in this package Please contact your project manager for the laboratory's current list of certified methods and analytes.

APPENDIX C RECONSTRUCTED MONITORING WELL ELEVATIONS

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10

1200 SIXTH AVENUE SEATTLE, WA 98101

TARGET SHEET

The following document was not imaged.

This is due to the Original being:

	X Oversized
	CD Rom
	Computer Disk
	Video Tape
	Other:
*A copy of the do	cument may be requested from the Superfund Records Center.
	Document Information
Document ID #:	1429435
File #:	FHCSF 19.4.1.2 v. 2
Site Name:	Frontier Hard Chrome
,	Monitoring Well Asbuilt for Grand Central

APPENDIX D DATA VALIDATION MEMORANDUM

APPENDIX D EXCEPTION SUMMARY FOR LABORATORY DATA QUALITY ASSURANCE REVIEW

DATA SUMMARY

The laboratory data quality assurance review and validation of analytical results for 26 water samples, Project Number 1210057, collected between October 15 and 18, 2012 from the Frontier Hard Chrome site has been completed. This review incorporates sample results for other metals for assessment purposes, but applies only to the following analyses:

- Total and dissolved chromium by Washington State Department of Ecology's (Ecology) Manchester Environmental Laboratory (MEL), of Port Orchard, Washington, following EPA Method 200.7 inductively-coupled plasma/atomic emission spectrometry (ICP-AES).
- Sulfate by Ecology's MEL of Port Orchard, Washington, following EPA Method 300.0 determination of inorganic anions by ion chromatography.
- Dissolved sulfur by TestAmerica Laboratories, Inc. Seattle of Tacoma, Washington, following EPA Method 200.7 inductively-coupled plasma/atomic emission spectrometry (ICP-AES).
- Hexavalent chromium by Columbia Analytical Services, Inc. (CAS) [doing business as ALS Environmental (ALS)] of Kelso, Washington, following EPA SW-846 Method 7196A—colorimetry.

Quality assurance/quality control (QA/QC) reviews of laboratory procedures were performed on an ongoing basis by MEL. A data review was performed by MEL's QA section on laboratory quality control results to ensure they met method quality objectives for the project. Data review followed the format outlined in the *National Functional Guidelines for Inorganic Data Review* (EPA 2004), modified to include specific criteria specified in the *Frontier Hard Chrome Long-Term Monitoring Plan* (Work Plan; Weston 2004). Raw laboratory data including calibrations, sample login forms, sample preparation logs and bench sheets, mass spectral tuning data, and raw instrument data were not available for this review.

This is an exception summary. All laboratory quality assurance results as applicable (e.g., holding times; blank sample analysis, matrix spike/duplicate spike analysis, and laboratory control sample analysis results) supplied to WESTON for the analyses met acceptance criteria specified in the Work Plan (Weston 2004), with no exceptions.

A field duplicate was not collected for hexavalent chromium analysis. Laboratory duplicate, matrix spike/duplicate spike analysis, and laboratory control sample analysis results met acceptance criteria.

Precision was evaluated as relative percent differences (RPD) between duplicate and total chromium, dissolved chromium concentrations and sulfate concentrations. Field duplicates for

total recoverable chromium (Sample Nos. 1210057-12, 1210057-20, and 1210057-26) were collected from monitoring wells B85-4, RA-MW-15B, and RA-MW-12A, respectively. A field duplicate for dissolved chromium (Sample No. 1210057-20) was collected from monitoring well RA-MW-15B. A field duplicate for sulfate (Sample No. 1210057-04) was collected from monitoring well W85-6A. Acceptance criteria specified in the QAPP were met for all duplicate analyses.

Sample 1210057-19 (collected from monitoring well RA-MW-15B) and its associated duplicate sample, 1210057-20 (QA-3) both exhibited total and dissolved chromium concentrations below their respective laboratory detection limits; therefore, the RPD between the field sample and the duplicate sample was not calculable for either total or dissolved chromium. Additionally, sample 1210057-11 (collected from monitoring well B85-4) and its associated duplicate sample, 1210057-12 (QA-2), both exhibited total chromium concentrations below their respective laboratory detection limits; therefore, the RPD between the field sample and the duplicate sample was not calculable. The RPD for total chromium between sample 1210057-25 (collected from RA-MW-12A) and its duplicate sample, 1210057-26 (QA-4), was calculated as 16.9%. The RPD for sulfate between sample 1210057-03 (collected from W85-6A) and its duplicate sample, 1210057-04 (QA-1), was calculated as 0.5%.

DATA QUALIFICATION

No QA/QC exceptions were noted in the data review associated with the analysis of total recoverable, dissolved, and hexavalent chromium. Upon consideration of the data qualifications noted above and the project data quality objectives specified in the QAPP, the data are ACCEPTABLE for use.

DATA QUALIFIERS

If required, any data qualifiers applied by the laboratory have been removed from the data summary sheets and superseded by data validation qualifiers.

No data validation qualifiers were used to modify the data quality and usefulness of individual analytical results.

DATA ASSESSMENT

Data review was performed by an experienced quality assurance chemist independent of the analytical laboratory and not directly involved in the project.

This is to certify that I have examined the analytical data and based on the information provided to me by the laboratory, in my professional judgment the data are acceptable for use except where qualified with qualifiers that modify the usefulness of those individual values.

Tara Fitzgerald
Project Chemist

December 21, 2012

Date

APPENDIX E MONITORING WELL CONSTRUCITON AND FIELD DATA SHEETS

Monitoring Well Construction Information Frontier Hard Chrome, Vancouver, Washington

Monitoring Wells B85-3 B85-4 B85-6 B87-8 MW-1 MW-3 MW-4 MW-7 MW-20 MW-21 RA-MW-11A RA-MW-11B	2 2 2 4 2 2 2 2 2 2 2 2	29.5 26.5 29.5 29.5 34.5 37.3 35.2 47.2 27.3	24 21.5 24.5 24.5 19.2 21.7 19.7 41.6	29 26.5 29.5 29.5 34.0 36.5	5 5 5 5	10/7/85 10/10/85 10/15/85	112605.90 112324.18 112532.34	1091462.16 1091631.89 1091705.95	24.9 25.38	25.6 ⁺ 26.18
B85-4 B85-6 B87-8 MW-1 MW-3 MW-4 MW-7 MW-20 MW-21 RA-MW-11A RA-MW-11B	2 2 4 2 2 2 2 2 2 2	26.5 29.5 29.5 34.5 37.3 35.2 47.2	21.5 24.5 24.5 19.2 21.7 19.7	26.5 29.5 29.5 34.0 36.5	5 5 5	10/10/85 10/15/85	112324.18	1091631.89	25.38	
B85-6 B87-8 MW-1 MW-3 MW-4 MW-7 MW-20 MW-21 RA-MW-11A RA-MW-11B	2 4 2 2 2 2 2 2 2 2	29.5 29.5 34.5 37.3 35.2 47.2	24.5 24.5 19.2 21.7 19.7	29.5 29.5 34.0 36.5	5 5	10/15/85				26.18
B87-8 MW-1 MW-3 MW-4 MW-7 MW-20 MW-21 RA-MW-11A RA-MW-11B	4 2 2 2 2 2 2 2 2	29.5 34.5 37.3 35.2 47.2	24.5 19.2 21.7 19.7	29.5 34.0 36.5	5	-	112532.34	1091705 95		
MW-1 MW-3 MW-4 MW-7 MW-20 MW-21 RA-MW-11A	2 2 2 2 2 2 2	34.5 37.3 35.2 47.2	19.2 21.7 19.7	34.0 36.5			1	1331700.33	24.64	25.2 ⁺
MW-3 MW-4 MW-7 MW-20 MW-21 RA-MW-11A	2 2 2 2 2 2	37.3 35.2 47.2	21.7 19.7	36.5		1/13/87	112344.00	1091529.10	25.95	26.21
MW-4 MW-7 MW-20 MW-21 RA-MW-11A	2 2 2 2	35.2 47.2	19.7	 -	14.8	5/21/02	112441.82	1091607.30	25.69	26.00
MW-7 MW-20 MW-21 RA-MW-11A RA-MW-11B	2 2 2	47.2	_	† 1	14.8	5/20/02	112433.24	1091610.54	25.69	26.04
MW-20 MW-21 RA-MW-11A RA-MW-11B	2 2		416	34.5	14.8	5/22/02	112424.34	1091616.25	25.62	25.84
MW-21 RA-MW-11A RA-MW-11B	2	27.3	1 71.0	46.4	4.8	5/20/02	112442.22	1091620.89	25.66	25.93
RA-MW-11A RA-MW-11B			21.9	26.6	4.7	5/22/02	112462.35	1091613.99	25.75	26.09
RA-MW-11A RA-MW-11B		35.6	30.4	35.1	4.7	5/22/02	112462.58	1091617.43	25.77	26.14
RA-MW-11B		27.8	22.9	27.6	4.7	5/2/03	112482.47	1091514.95	26.17	26.45
	2	33.1	28.3	32.9	4.6	5/1/03	112479.76	1091510.42	26.17	26.45
RA-MW-12A	2	28.1	23.2	27.9	4.7	5/1/03	112479.92	1091544.46	26.17	26.47
P.A -MW-12B	2	33.0	28.3	32.8	4.5	5/1/03	112480.85	1091541.13	26.16	26.53
MW-12C	2	39.2	34.5	39.0	4.5	4/30/03	112484.97	1091542.35	26.01	26.48
RA-MW-13A	2	27.3	22.5	27.1	4.6	6/3/03	112449.48	1091594.97	25.69	25.96
RA-MW-13B	2	32.1	27.3	31.9	4.6	6/3/03	112448.39	1091592.13	25.61	25.86
RA-MW-13C	2	39.7	34.6	39.5	4.9	6/3/03	112453.33	1091595.78	25.55	25.97
RA-MW-14A	2	25.3	20.3	25.1	4.8	6/4/03	112447.10	1091654.85	25.06	25.44
RA-MW-14B	2	30.3	25.5	30.1	4.6	6/4/03	112444.72	1091652.41	25.00	25.38
RA-MW-15A	2	26.6	22.1	26.6	4.5	5/30/03	112412.99	1091561.36	25.76	26.11
RA-MW-15B	2	32.7	27.7	32.5	4.8	5/30/03	112413.29	1091557.10	25.79	26.10
RA-MW-16A	2	26.8	22.2	26.7	4.5	6/2/03	112413.87	1091630.20	25.14	25.47
RA-MW-16B	2	32.7	27.9	32.5	4.6	6/2/03	112414.70	1091626.50	25.45	25.68
RA-MW-17A	2	26.4	21.7	26.2	4.5	6/5/03	112478.04	1091624.86	25.96	26.23
W85-2B	4	50	45	49	5	9/10/85	112427.94	1091417.06	25.77	26.09
W85-3A	2	29.5	19.5	29.5	10	9/5/85	112824.50	1091509.69	26.40	26.97
W85-3B	4	49	44	49	5	9/4/85	112824.23	1091514.26	26.77	27.14
W85-6A [#]	2	27	17	27	10	10/12/85	111924.04	1091489.91	25.38	25.8 ⁺
W85-6B#	4	49	44	49	5	10/11/85	111912.90	1091495.31	25.24	25.8⁺
W85-7A [#]	2	26.5	16.5	26.5	10	10/22/85	111916.01	1090984.92	22.83	23.1
W85-7B#	2	49	44	49	5	10/21/85	111917.15		23.0	23.1
W86-10B	4	50	43.8	48.8	5	12/12/86	112510.41	1093365.77	26.8	26.6 ⁺
W86-13A	4	28.5	23.5	28.5	5	12/16/86	112712.34	1090490.94	26.39 25.62	26.7 [†] 25.98
2-16A vv=2-16B	4	34 45	24 35	34 45	10 10	6/23/92 6/23/92	112436.05		20.02	25.96

Monitoring Well Construction Information Frontier Hard Chrome, Vancouver, Washington

Well No.	Well Dia.	Well Depth (feet)	Top of Screen Depth (ft)	Bottom of Screen Depth (ft)	Screen Length (ft)	Date Installed	Northing	Easting	Casing Elev. (feet)*	Top of Monument Elev. (feet)*
W97-18A	2	27.5	22.5	27.5	5	2/27/97	112299.62	1091919.98	25.44	25.72
W97-18B	2	44.5	39.5	44.5	5	2/26/97	112299.13	1091926.64	25.36	25.73
W97-19A [#]	2	25	20	25	5	3/17/97	111767.46	1090360.19	22.45**	22.99**
W97-19B [#]	2	45	40	45	5	3/17/97	111758.69	1090357.80	21.72**	22.56**
W98-20A#	2	27	22	27	5	5/29/98	111631.28	1090944.00	23.57**	23.87**
W98-21A [#]	2	26	21	26	5	5/27/98	111623.54	1091536.07	25.28**	25.5**
W98-21B [#]	2	44	39	44	5	5/28/98	111616.84	1091543.41	25.5**	25.77**
W99-R5A	2	32.2	22	32	10	1999	110927.24	1089741.49	32.26	NA
W99-R5B	2	49	44	49	5	1999	110929.99	1089743.59	32.33	NA

^{*} Feet above mean sea level. Vertical datum - City of Vancouver benchmark number 108.

^{**} Corrected to common datum. See Section 2.1.3 for explanation.

Ground surface elevation.

^{*} Northings and eastings obtained from conversion from GPS latitude and longitude taken February 2, 2004; GPS measurements and conversion done by EPA

W.S.	MIONS.	Gı	oundw	ater S	Sampli	ng Record
Project Name:	Frontier Hard Chron	ne - Event 18	Well ID:	FPW	-19A	
Project Location	:113 Y St., Vancouve	er, WA 98661	Sample No.:	1210	057-01	
Project Number:	10799.004.004.000	2	Sampler(s):	Brian P.	Reilly - WE	STON
Date/Time:	10/15/12 14	45	Weather:	~ 60° F	: ainy	•
Water Level Me	asurements and Purge	Data				·
Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Water in Well		Gallons per V ia. = 0.163 gal/ft,	Vell Volume 4" dia.=0.653 gal/ft)
14:45		7.84 Initial	7.16		1.17 (x3	3=350)
Water Level Mea	asurement Method:	Electric Tape	Other:			
Well Evacuation	Method: Peristaltic	Pump 🗖 Subr	nersible Pump	Bailer	Other:	
Purge Rate:	~ 200 ml/min	38				
Begin Purge:	Time: 14:45		Total Volume F	Purged:	~3 50	9
End Purge:	Time: /5:50		Well Volumes	Purged:	-	
	posed: 55-gal Drum Plastic Buckets to be					Other: Center
	on Method & Analysis					
Sample Type:	Groundwater	Surface Water	Other:			
Sample Time:						
Sample Collectio	n Method: X Pump Typ	e: <u>Peristalt</u> ic	Dedicated Y	In 🗍 Ba	ailer 🗖 Oth	er:
Decon Procedure	e: N/A Alconox	Wash 🗖 Tap	Rinse DI	Water 🗌	Other:	
Sample Descripti	on (color, turbidity, odor,	sheen, etc.):	olear no	oder no	sheen	
Sample Contai						
Quantity	Size	Bottle 7		Laboratory	Analysis	
ľ	500 mL	☐ Glass /	Poly	Total	Chraniv	n pH=1
		☐ Glass	D Poly			
		☐ Glass	☐ Poly			
•		☐ Glass	☐ Poly			
		☐ Glass	Poly			
	######################################	☐ Glass	☐ Poly			
	p fan 23' bys					
Sampler Signatu	ire:	3				

Date: 10/15/12 Well ID: W97-19A

Well Evacuation / Field Parameters	Well	Evacuation	/ Field F	Parameters
---	------	-------------------	-----------	------------

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
14:45	17.84		13.84	258	3.10	6.63	72.4	0.63
14:50	17.84		13.84	255	3.19	644	101.3	0.49
14:-55	17.84		13.92	253	308	6.45	103.5	0.49
<u>15=00</u>	17-84		B92	253	3.04	6.47	6.101	0.39
15-05	17.84		13.94	251	3.06	6.50	104.3	0.28
15:10	178F1		1390	251	3.03	6.51	103.9	0.296
15:15	17.84		1396	251	2.99	6.52	104.3	0.30
15:20	17.84		14-00	250	2-96	6.54	105.5	0.29
15:25	17.84		14.02	250	2.94	6.54	107.3	0.27
15:30	17.84		14.04	250	290	4-54	109.9	0.32
15-35	17.84		14.04	249	2-89	4.54	111.3	0.58
15-40	17-84	P. 274	14.08	249	2.99	6.55	110.3	0.56
15:45	17-84		14.11	249	2.85	6.55	111.8	0.27
					•			
-	,		<u> </u>					

	WEST	N HONS.	Gı	roundw	ater	Sampli	ng Rec	ord
	Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	wg	7-9B		
	Project Location:	113 Y St., Vancou	ıver, WA 98661	Sample No.:	1210	057-02		
	Project Number:	10799.004.004.0	002	Sampler(s):	Brian	P. Reilly - WE	STON	
	Date/Time:	10/15/12	15:55	Weather:	$\sim 60^{\circ}$	F; camy		·
	Water Level Me	asurements and Pur	ge Data					
	Time	Depth of Well	Depth to Water			Gallons per V		
		(TOC)	(TOC)	in Well	. (2	" dia. = 0.163 gal/ft,	4" dia.=0.653 gai/fi	1)
			17.16	27.84	_	4.54	· · · · · · · · · · · · · · · · · · ·	. '
	•	_ □ Meas. X Hist.	Initial					
			Tomas Tanai C	7 04 04	_			1
		surement Method:						<u>,- · · </u>
	•	Method: 💢 Peristalt	_	mersible Pump	∟" Bail	er L. Other: _	7 1 2	· · · · · ·
ı	Purge Rate:	~ 200 mc/min				0 4		
	Begin Purge:	Time: 16:00		Total Volume	Purged:	~ 3 get	<u></u>	
		Time: <u>√4 - ∞</u>		_				
		oosed:					Other: n Center	
	Sample Collection	on Method & Analys	is -			 `		
	Sample Type:	Groundwater	Surface Water	Other:	<u>. </u>	· · · · · · · · · · · · · · · · · · ·	•	
	Sample Time:	17:05	- -					
	Sample Collection	n Method: X Pump	т _{уре:} <u>Peristalt</u> ic	Dedicated Y [JN. 🔲	Bailer 🗖 Oth	ner:	
	Decon Procedure	: 💹 N/A 🔲 Alçon	ox Wash 🔲 Tar	Rinse 🗖 Di	Water	Other:		,
	Sample Description	on (color, turbidity, od	or, sheen, etc.):	dear ; no	oder;	no shuen	-	
	Quantity	Size	Bottle	Гуре	Laborato	ory Analysis		•
	. /	<00 m. 1		ŽÎ Poly	TILL	Chremium	10621	•
			☐ Glass	☐ Poly	10,00	Cyroniaz	, 	 .
			☐ Glass	☐ Poly			·	:
	-			☐ Poly				
			☐ Glass	☐ Poly				 .
		-	☐ Glass	☐ Poly				
	Notes: OWO	ram 27 693		,				 .
	1 Garage	1 9/3						
	,			•				
\	Sampler Signatu	rex 7	-				•	
i		<u></u>						

Date: 10/15/12

Well ID: W97-19 B

Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1600	17-16	Ø	14.32	249	275	10.57	112.1	1.21
1605	17.16		14.32	249	2.75	6.57	112.1	0.25
IVID	17.16		14.02	256	291	6.67	105.9	0.23
1105	17.16		1397	256	3.00	6.67	117.4	0.40
1620	17.16		13.97	255	195	4-47	119-3	0.23
1025	17.16		13.97	255	2.92	4.47	121.3	0.41
1430	17.16		13.98	255	2.89	10.68	121.4	0.45
11035	17.16		14.00	255	2.89	6.68	122.2	0.55
164D	17.16		1390	255	2.88	6.68	122.7	0.68
1645	17.16		1392	255	2.86	6.68	123-9	0-69
1450	17-14		13.98	255	2.83	6.69	124.9	0.73
1455	17.16		14-00	255	2.82	6.69	125-1	0.67
1700	17.16		14.01	255	2.80	4.70	124-0	0.37

#1 - YSI seems to have been malforeting a stroke for first 2 readings, reset unit

W.Su		Gı	roundw	ater Sampling Record
Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	W85-6A
Project Location	n:113 Y St., Vancou	iver, WA 98661	Sample No.:	1210057-03 [-OH = QA-1]
Project Number	10799.004.004.00	002	Sampler(s):	Brian P. Reilly - WESTON
Date/Time:	10/16/12	745	Weather:	light showers -> partly durdy ~
Water Level Me	easurements and Pur	ge Data		
. Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Wate in Well	Gallons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
0755		20.99 Initial	6.01	0.98
Water Level Me	asurement Method:	Electric Tape	. Other:	
Well Evacuation	Method: 💢 Peristalt	ic Pump 🗖 Subi	mersible Pump	Bailer Other:
-	~ 200 mc/min			
Begin Purge:	Time: <u>0700</u>	- 	Total Volume	Purged: ~3 5
	Time: <u>0900</u>		Well Volumes	
Purge Water Dis 5-gallon	sposed: 55-gal Dr Plastic Buckets to b	um Storage oe disposed at 0	Tank Gro	ound Duribin A Other: ouver's City Operation Center
	ion Method & Analys			
Sample Type:	Groundwater	Surface Water	Other:	
Sample Time:	0910			_
· ·				□ N □ Baller □ Other:
Decon Procedur	e: 💹 N/A 🔲 Alcon	ox Wash 🔲 Tar	Rinse DD	l Water □ Other:
Sample Descript Sample Conta		or, sheen, etc.):	clear no	oder, no speen
Quantity	Size	Bottle ²	Туре	Laboratory Analysis
	500 mL	☐ Glass	Poly -	Total Chamum; ph =1
	500 ML	☐ Glass	Poly Poly	Sulfate
0/	500 mL	☐ Glass	Poly	Desolved Sufer; ph =1
QA.	-(☐ Glass	Poly	
	500 mL	Glass	Poly	Sufate Time = 0915
,	·	☐ Glass	☐ Poly	<u> </u>
Notes:	op from 25'b	<i>y</i>		
Ofittud				
	2			N. Carlotte and Carlotte and Carlotte and Carlotte and Carlotte and Carlotte and Carlotte and Carlotte and Car
Sampler Signat	ure:			_

Date: 10/10/12____

Well ID: W85-61

Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
OFX 00	20.99	<u>ø</u>	417	270	5.24	6.50	925	0.14
0805	20-99		14.14	270	5.15	6.42	96.8	0.26
0810	2099		14.01	269	4.89	<u>6.38</u>	98.6	0.14
0815	20-99							. ———
0820	20.99	· .	14.17	265	4.53	10.49	100-9	0-21
0825	20.99		14.17	261	4.70	651	102.2	0.17
<u>0836</u>	20.99		14.16	258	5.14	6.51.	101.6	0-20
0835	10.99	·	14.16	<u>152</u>	5.28	6.53	101.4	0.19
0840	20,99	· ·	14.18	251	5.08	6.53	/0/.1	0.15
0845	20.99		14.20	246	5.10	6.53	99.9	0.14
<u> </u>	20.99		14.22	258	5.//_	6.54	99.8	0.18
<u>USSS</u>	20.99		14.24	253	5.08	6.54	100.2	0-18
0900	20.99		14.20	219	5.07	6.54	14.8	0.14
		· 		<u>.</u>				
			· · · · · · · · · · · · · · · · · · ·				 	·
		 				·		·
						٠		

¹⁾ Flow rate severyl descensed. Increased pump speed to compensate

Ground Ground	water Sampling Record
Project Name: Frontier Hard Chrome - Event 18 Well ID:	W85- 4B
Project Location: 113 Y St., Vancouver, WA 98661 Sample No	.: 1210057 - 05
Project Number: 10799.004.004.0002 Sampler(s)	
Date/Time: 10(16/12 09/0 Weather:	partly dowly, ~50°F
Water Level Measurements and Purge Data	
Time Depth-of Well Depth to Water Feet of Water (TOC) in Well	der Gallons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia. =0.653 gal/ft)
0915 49 20.9 28.09 Meas. Hist. Initial	4.58
Water Level Measurement Method: Electric Tape Other:	
Well Evacuation Method: X Peristaltic Pump Submersible Pun	mp 🗖 Bailer 🗖 Other:
Purge Rate: ~ 200 mUmin	• .
Begin Purge: Time: 915 Total Volum	ne Purged: ~3 Sul.
End Purge: Time: 1025 Well Volum	• •
Purge Water Disposed: 55-gal Drum Storage Tank 5-gallon Plastic Buckets to be disposed at City of Van	Ground Liquibin Other:
Sample Collection Method & Analysis	
Sample Type: Groundwater Surface Water Other:	
Sample Time: <u>/030</u>	
Sample Collection Method: Pump Type: Peristaltic Dedicated	Y□N ☐ Bailer ☐ Other:
Decon Procedure: N/A Alconox Wash Tap Rinse	DI Water Other:
Sample Description (color, turbidity, odor, sheen, etc.): clar no	o oder; no stren
Sample Containers	,
Quantity Size Bottle Type	Laboratory Analysis
Sound Glass D Poly	Total Chamium; ph=1
Glass D Poly	
☐ Glass ☐ Poly	
☐ Glass ☐ Poly	
☐ Glass ☐ Poly	
☐ Glass ☐ Poly	
Notes: -pump from 27' bg3	
Sampler Signature:	_

Date: 10/16/12

Well ID: W85-6B

Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
20920	20.91	general and	14.31	246	4.04	6.56	1649	0.24
0925	20-91	19 40	74.31	246	4.04	6.56	1049	0-11
00930	20.91		14.31					0.11 -8
	20.91		14.23	221	9.43	7.63	87.7	0.10
0940	20.91		14.23	221	9.40	7.66	91.6	0.12
0945	2091		14.23	221	9.38	7.66	94.8	0.16
0950	20.91	-	14.29	221	9.37	7.67	95.8	0.14
0955	20.91	-	14.13	219	10.08	7.64	99.0	0-18
1000	2091		14.25	217	11.05	7.67	98.8	0-16
1005	20.91		14.27	216	10.89	7.67	160.7	0.14
1010	20.91		14.19	213	11,63	7.66	103.0	0.23
1015	2091		14.26	212	11.03	7.66	104.1	0.18
1020	20.91		14.30	214	11,06	7.67	104.7	0.30
1025	20.91		14.20	217	10.86	7.65	107.0	0-24

O Had to reset 451, values frozen often implying while on. Values till 0935 net accurate.

[@] severe decrease in flow rate. Increased pump speed to compensate.

³ flow rate becoming variable; unsure why, try to compensate wil pump; also notable jump in DO.

WEST	N HONS	Gı	oundw	ater Sampling Record
Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	W99-25A
Project Location	113 Y St., Vancou	ver, WA 98661	Sample No.:	1210057-06
Project Number:	10799.004.004.00	002	Sampler(s):	Brian P. Reilly - WESTON
Date/Time:	10/16/12	1/05	Weather:	potry dady; ~55°F
Water Level Me	asurements and Pur	ge Data	· ·- · .	
Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Water in Well	Gallons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
1110	32.2 ☐ Meas. ☐ Hist.	27.42	4.78	0.78
	☐ Meas. ☐ Hist.	initial		
Water Level Mea	surement Method:	Electric Tape	Other:	
				Bailer Other:
Purge Rate:	~200 mc/min		•	· . · · · ·
Begin Purge:	Time: ///	<u> </u>	Total Volume	Purged: ~3 g l
End Purge:	Time: 1210		Well Volumes	Purged:
Purge Water Dis	posed: 🔲 55-gal Dr	um 🏻 Storage 🛚	Tank 🗖 Gro	und Liquibin Other:
	on Method & Analysi			· · · · · · · · · · · · · · · · · · ·
Sample Type:	Groundwater [3 Surface Water	Other:	· · · · · · · · · · · · · · · · · · ·
Sample Time:	1215	·		
Sample Collectio	n Method: X Pump	т _{уре:} <u>Peristalt</u> ic	Dedicated Y [N Bailer Other:
Decon Procedure	e: 💹 N/A 🗀 Alcone	ox Wash 🔲 Tap	Rinse DI	Water Other:
Sample Descripti	on (color, turbidity, ode	or, sheen, etc.):		
Sample Contai	ners		-	
Quantity	Size	Bottle 1	Гуре	Laboratory Analysis
. /	500.mL	☐ Glass	Poly	T. Chromium 7h=1
	500 ml	☐ Glass	Poly	Sulfate
0 /	SOO ML	🗖 Glass 🛭	Poly	D Sufar ph=1
•		☐ Glass I	☐ Poly	
		Glass (D Poly	
	•	Glass I	D Poly	
Notes:	271 hrs	·		•
- Pump 1	rom 27 bys			
- 971,000			·	·
Sampler Signatu	ire:	1 P		

Date: 10/16/12

Well ID: W99-R5A

Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1110	27.42	\$	14.24	247	5.20	6.44	128.6	0.63
1115	27.42		14.30	247	4.86	6.38	133 3	0.97
0/1/20	27.42		14.95	245	4.71	6.43	133.1	0-93
1125	27.42		14.49	246	4.56	6.40	136.1	1-25
1130	27.42		14.30	246	4.44	6.36	140.7	1.01
1135	27.42		14.38	246	4.41	6.38	146.8	0.91
1140	27.42		14.30	246	4.39	0.38	141,6	0.54
1145	27.42		14.17	246	4.38	6.37	142-6	0.41
1/50	27.42		1415	246	4.38	6.37	142-1	0-36
1155	27.42		14.10	246	4.37	6.39	140-5	0.71
1200	27.42		14.10	246	4.36	6.39	140.8	0-21
1205	27.42		14-08	246	4.36	6.39	140.9	0,23
1210	27.42		1408	246	4.38	6.40	140-4	cleer
		d. gradical						
				-		Section 1		

O flow rate verying. Try to compensate of pemp.

2 L. Lo error on turbelimeter, could not get final reading.

XXESTICE.	N HONS.	Gı	roundw	ater Sampling Record
Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	W99-R5B
Project Location	113 Y St., Vancou	iver, WA 98661	Sample No.:	1210057-07
Project Number:	10799.004.004.00	002	Sampler(s):	Brian P. Reilly - WESTON
Date/Time:	10/16/12	1225	Weather:	partly cloudy: ~ 60°F
Water Level Me	asurements and Pur	ge Data		
· Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Wate in Well	r_ Gallons per, Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
1225	49.00	27,46 Initial	21.54	3.51
	☐ Meas. 💢 Hist.	initial .		÷ ·
				
	surement Method: 🔼			
Well Evacuation			mersible Pump	Bailer Other:
Purge Rate:	~200 mul	nin		,
Begin Purge:	Time: /280		Total Volume	Purged: ~3 fol
End Purge:	Time: <u>/3²⁰</u>		Well Volumes	Purged:
Purge Water Disp 5-gallon F	posed:	um U Storage be disposed at (Tank U Gro	ound Duquibin Other: ouver's City Operation Center
Sample Collecti	on Method & Analysi	is	,	
Sample Type: 🕽	Groundwater [Surface Water	Other:	
Sample Time:	1325	-		
				On Bailer Other:
Decon Procedure	e: N/A Alcon	ox Wash . Ta	Rinse LID	Water U Other:
•	on (color, turbidity, od	or, sheen, etc.):		
Sample Contai			· -	I ak and an Amplimia
Quantity	Size	Bottle	- *	Laboratory Analysis
	500mL	☐ Glass		T. Chromium; gh 21
		☐ Glass	Poly	
		☐ Glass	Poly	
·	· ·	☐ Glass	Poly	· · · · · · · · · · · · · · · · · · ·
·		Glass	Poly	
		☐ Glass	Poly	· · · · · · · · · · · · · · · · · · ·
Notes:	:			
Sampler Signatu	ire:		<u> </u>	

Date: 10/16/12

Well ID: W99-R5B

Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
D/230	27.46	6	13.90	251	10.38	6.49	145.3	cleer
3/235	27.46		13.83	251	6.05	6.55	141.8	0-12
9 1240	27.46		<					
1245	21.46		13.86	252	5.90	6.63	135-6	0.93
1250	21.46		13.84	252	5.71	6.62	138.7	1.94
1255	27.46		13.96	251	5.51	6.65	139.2	1.75
1300	2746		1397	251	5,41	6.65	140.4	1.62
1305	27.46		13.95	251	5.15	6.64	141,2	0.70
1310	27.46		13.90	250	4.95	6.64	1392	0.68
1315	27.46		13.90	250	4.96	6-64	140.3	0.20
1320	27.46		13.94	250	4.86	6.64	141.1	0-19

						<u></u>		
						*		
		N. S. S. Salvagara, and a second second				1 - F - 10 - 10		
							-	

OL Lo cover on trobitimeter

³ daysted pump speed to maintain flow rate.
3 missed manif. Luc to adjust pump/451 position

WESTE	IOSS.	Gı	roundw	ater Sampling Record	Ī					
Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	W98-21B	_					
Project Location:	113 Y St., Vancou	ıver, WA 98661	Sample No.:	1210057-08	_					
Project Number:	10799.004.004.00	002	Sampler(s):	Brian P. Reilly - WESTON	_					
Date/Time:	10/14/12	1430	Weather:	partly closely: ~60°F	_					
Water Level Mea	surements and Pur	ge Data	•-							
Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Water in Well	Gallons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)						
1430	U4 ☐ Meas. A Hist.	2206	21.94	3.58						
	☐ Meas. A Hist.	Initial								
Water Level Mea	surement Method:	Electric Tape	Other:							
Well Evacuation	Method: X Peristalt	ic Pump 🗖 Subi	mersible Pump	Bailer Other:	_					
Purge Rate:	~200 m/min				t					
Begin Purge:	Time: 1435		Total Volume I	Purged: ~3 gcl.						
End Purge:	Time: <u>/535</u>	· · · · · · · · · · · · · · · · · · ·	Well Volumes	Purged:						
Purge Water Disp	Purge Water Disposed: 55-gal Drum Storage Tank Ground Liquibin Other: 5-gallon Plastic Buckets to be disposed at City of Vancouver's City Operation Center									
	n Method & Analys									
Sample Type:	Groundwater [Surface Water	Other:		_					
Sample Time:	1540	_		_						
				IN Baller Other:						
Decon Procedure	N/A Alcon	ox Wash 🔲 Tar	Rinse DI	Water 🔲 Other:						
Sample Description Sample Contain		or, sheen, etc.):	clear no	oder; no sheen	-					
Quantity	Size	Bottle ¹	Туре	Laboratory Analysis						
	500mL	☐ Glass	Poly	T. Chrombum; pH=1						
-		☐ Glass	☐ Poly							
		☐ Glass	☐ Poly		_					
•		☐ Glass	☐ Poly		_					
		☐ Glass	☐ Poly		_					
	•	☐ Glass	☐ Poly `		_					
Notes: pump 1	from 27 bg3				•					
	•									
Sampler Signatu	e:	AP)								

Date: 10/16/12 Well ID: W98-213

Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1435	22.06	Ø	14.55	230	8.77	6.75	122-1	0.14
1440	22.06	F 77	14.03	224	7.99	6.33	149.3	0.13
1445	22.06		13.87	223	7.89	6.33	157,8	0.23
1450	22.06		13-82	222	7.77	6.32	1589	0.31
1455	22.06		13.76	222	9,05	6.32	160.6	0.29
0 1500	22.06		13.87	224	7.74	6.33	161.1	0.24
1505	22.06		13.94	225	7.60	6.36	160.4	0.38
1510	2206		14.00	253	7.27	6.40	160-6	0.27
15/5	22.06		13.91	274	6.47	6.45	159.6	0.14
1520	27.06		13.78	277	5.91	6.48	158.2	0.21
1525	22.06		13.73	276	5.43	6.48	157.1	0,14
1530	22.06	-	13.72	274	5.18	6.49	156.6	0.30
<u>/535</u>	2206		13.69	274	4.92	6.49	155.8	0.16
					MANAGEMENT OF THE PROPERTY OF	= 75.		

O garge rate decreased, increased pump from to compensate

Groundwater Sampling Record
Project Name: Frontier Hard Chrome - Event 18 Well ID: 198-218
Project Location: 113 Y St., Vancouver, WA 98661 Sample No.: \2\005F 09
Project Number: 10799.004.004.0002 Sampler(s): Brian P. Reilly - WESTON
Date/Time: 10/16/12 /545 Weather: Overlost; ~65°F
Water Level Measurements and Purge Data
Time Depth of Well Depth to Water Feet of Water Gallons per Well Volume 2 (TOC) in Well (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
1545 26 21.84 4.16 0.68
☐ Meas. A Hist. Initial
Water Level Measurement Method: Electric Tape Other:
Well Evacuation Method: X Peristaltic Pump Submersible Pump Bailer Other:
Purge Rate: ~ 200 mUmin
Begin Purge: Time: 1545 Total Volume Purged: ~3 gd.
End Purge: Time: 1646 Well Volumes Purged:
Purge Water Disposed: 55-gal Drum Storage Tank Ground Liquibin Mother: 5-gallon Plastic Buckets to be disposed at City of Vancouver's City Operation Center
Sample Collection Method & Analysis
Sample Type: 📈 Groundwater 🗖 Surface Water 🗖 Other:
Sample Time: 1645
Sample Collection Method: Pump Type: Peristaltic Dedicated Y. D. Bailer Dether:
Decon Procedure: N/A Alconox Wash Tap Rinse DI Water Dother:
Sample Description (color, turbidity, odor, sheen, etc.): clear no oder no squen
Sample Containers
Quantity Size Bottle Type Laboratory Analysis
1 500mL Glass & Poly T. Chromium 9H21
Glass D Poly
Glass D Poly
☐ Glass ☐ Poly
☐ Glass ☐ Poly
☐ Glass ☐ Poly
Notes: - pump from 24' bgs
Sampler Signature:

Date: 16/16/12

Well ID: W98-21A

Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (μS/cm)	DO (mg/L)	pН	ORP (mV)	Color/ Turbidity
<u>1545</u>	21.84	¢_	14.05	262	5.46	6.45	143.2	0,20
1550	21.84		13.99	258	453	6.41	151.4	0.34
1555	21.84	-	13.99	257	4.44	6-41	15/. 3	0.63
1600	21.84		13.98	257	4.32	6.40	151.6	0.49
1605	21,84		13.96	256	4.29	6.40	151.5	0.57
1610	21.84		13.97	256	4.29	6.40	149.6	0.50
1615	21.84		13.95	256	432	6.39	148-1	0.38
1420	21.84		1400	255	4.45	6.39	147.7	0.41
0/425	21.84		14.20	252	4.62	6.36	148.8	0.44
1430	21.84		14.03	252	4,55	6.32	<u> 152.0</u>	0-33
1435	21.84		14.15	252	4.54	6.85	152.4	0-15
1640	21.84		14.13	253	4.53	634	154.7	0-23
								<u> </u>
			12					

Oflow rate dropped; adjusted pump speed to compensate

WEST C	IDS.	G	roundw	ater	Sampling	g Record
Project Name:	Frontier Hard Chi	ome - Event 18	Well ID:	_B9	\$5-3	
Project Location:	113 Y St., Vanco	uver, WA 98661	Sample No.:	121	0057-10	
Project Number:	10799.004.004.0	002	Sampler(s):	Brian F	P. Reilly - WEST	ON
Date/Time:	10/16/12	1705	Weather:	over	ast; some si	nowus
Water Level Mea	surements and Pur	ge Data	*-	· <u> </u>		
Time	Depth:of Well (TOC)	Depth to Water (TOC)	Feet of Water in Well		Gallons per Well	
1705	29.5	19.91	9.59	_	1.56	
	☐ Meas. Hist.	Initial				
				-		
Water Level Meas	surement Method: 🔽	Electric Tape	Other:			
Well Evacuation M	lethod: 💢 Peristal	tic Pump 🗖 Subi	mersible;Pump	☐ Baile	or 🗖 Other:	
Purge Rate:	a see me/min					r .
Begin Purge:	Time: 1710		Total Volume I	Purged:	~3 gel	
End Purge:			Well Volumes			<u> </u>
Purge Water Dispe	osed: 55-gal Di	rum Storage	Tank Grou	und 🗇	Liquibin 📈 O	ther:
	astic Buckets to t n Method & Analys		Jily of Varico	uver s C	nty Operation Ce	inter
Sample Type:			Other:			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Sample Time:	1815	-				
Sample Collection	Method: Pump	т _{уре:} <u>Peristalt</u> ic	Dedicated Y C	JN 🗖 E	Baller 🗖 Other:	;·
Decon Procedure:	N/A Alçon	ox Wash 🔲 Tar	Rinse 🗖 Di	Water [Other:	•
Sample Description	n (color, turbidity, od	or, sheen, etc.):	clow, no	odor;	no Spen	2 1 2 2 2
Sample Contain	ers				•	
Quantity	Size	Bottle ²	3 A	Laborato	ry Analysis	
	500ml	☐ Glass	Poly	T. Ch	min 91/2	1
		☐ Glass	☐ Poly		. , , ,	· <u>·····</u> ·
		☐ Glass	☐ Poly	-		•
•		☐ Glass	D Poly			
		☐ Glass	D Poly		<u>.</u>	
•		☐ Glass	D Poly			·
Notes: - Purp!	from 25' bgs (a	lightly higher th	on typical	lue .to	TOC being recce	red below from
			,	Y		
Sampler Signatur	e: <u>\$</u>	20				

Date: 10 16 12 Well ID: 385-3

Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1710	. 01	<u>\$</u>	12.96	901	2.27	6.79	-64.0	79.7
1715	19.96		12.77	820	1.26	6.77	50.7	16.8
1720	19.96		12.71	827	0.95	6.78	-53.5	6.74
1725	19.96		12.70	836	0-43	6.80	-52.9	3.58
1730	19.96		12.68	848	0,50	6.80	-52.8	3.86
1735	1996		12.64	856	0.43	6.81	-57.4	1.44
1740	19.96		12.63	843	0.39	(0.81	-57.0	1.00
1745	19-96		12.61	872	0.35	6.81	-620	1,17
1950	19.96		12.67	876	0-33	6.81	-61.7	0.57
1755	1996		12.56	876	0.31	6.82	-59.3	1,00
1800	19.96		12.55	876	0,30	6.81	-58.7	0.69
1805	19.96		12.54	876	0.29	6.82	-55.4	0.64
1810	19.910	1	12.54	875	0.28	6.82	-58,1	0.44
				_			-	
					E4 E			

Project Name:	Frontier Hard Chr	ome - Event 18		285-4
Project Location	n: 113 Y St., Vancou	ver, WA 98661	Sample No.:	1210057-11 (1210057-12=G
Project Number	: 10799.004.004.00	002		Brian P. Reilly - WESTON
Date/Time:	10/17/12		Weather:	overast; ~45°F
Water Level Me	easurements and Pur	ge Data		
Time	Depth of Well (TOC)	Depth to Water (TOC)	in Well	Gallons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
0740		19,98 Initial	6.52	1.06
Vater Level Mea	asurement Method:	Electric Tape	Other:	
Well Evacuation	Method: X Peristalt	ic Pump 🗖 Subr	mersible Pump	Bailer Other:
	~ 200 my			
Begin Purge:	Time: 0745		Total Volume I	Purged: ~3 gcl.
End Purge:	Time: 0845	5	Well Volumes	Purged:
Purge Water Dis	sposed: 55-gal Dr	rum Storage	Tank 🗖 Grou	und Liquibin Other: uver's City Operation Center
	ion Method & Analys			
Sample Type:	Groundwater [Surface Water	Other:	
	~~~			
Sample Time:	0850			
Sample Time: Sample Collection	on Method: Pump	- _{Туре:} <u>Peristalt</u> ic	Dedicated Y	IN Bailer Other:
Sample Collection	on Method: Pump e: N/A Alcon			
Sample Collection Decon Procedure	on Method: Pump e: N/A Alcon	ox Wash Tap	Rinse DI	Water Other:
Sample Collection Decon Procedure Sample Descript	on Method: Pump e: N/A Alcon tion (color, turbidity, od	ox Wash Tap	Rinse DI	
Sample Collection Decon Procedure Sample Descript	on Method: Pump e: N/A Alcon tion (color, turbidity, od	ox Wash Tap	Rinse DDI	Water Other:
Decon Procedure Sample Descript Sample Contain	on Method: Pump e: N/A Alcon tion (color, turbidity, od iners Size	ox Wash Tap lor, sheen, etc.):	Rinse DDI	Water Other:  Oder; no sheen  Laboratory Analysis
Sample Collection Decon Procedure Sample Descript Sample Contain	on Method: Pump  Pump  Pump  Pump  Alcon  Alcon  Color, turbidity, od  iners  Size  Size	lox Wash	Rinse DDI  COCCONO  Type  Poly	Water Other:
Sample Collection Decon Procedure Sample Descript Sample Contain	on Method: Pump e: N/A Alcon tion (color, turbidity, od iners Size  SWML 500 ML	lor, sheen, etc.):  Bottle	Rinse DDI  COCC Type  Poly Poly	Water Other:  Oder: ne sheen  Laboratory Analysis  T. Chromium; pH2  Suifate
Sample Collection Decon Procedure Sample Descript Sample Contain	on Method: Pump  Pump  Pump  Pump  Alcon  Alcon  Color, turbidity, od  iners  Size  Size	ox Wash	Rinse DDI  COCC Type  Poly Poly	Water Other:  Ocder; no sheen  Laboratory Analysis  T. Chromium; pH2
Sample Collection Decon Procedure Sample Descript Sample Contain	on Method: Pump e: N/A Alcon tion (color, turbidity, od iners Size  SWML 500 ML	lor, sheen, etc.):  Bottle Glass Glass Glass	Rinse DI  Type  Poly Poly Poly Poly Poly	Water Other:  Oder: ne sheen  Laboratory Analysis  T. Chromium; pH2  Suifate
Sample Collection Decon Procedure Sample Descript Sample Contain Quantity / /	on Method: Pump e: N/A Alcon tion (color, turbidity, od iners Size  SWML 500 ML	ox Wash	Type Type Poly Poly Poly Poly Poly Poly Poly Poly	Water Other:  Dodor; no sheen  Laboratory Analysis  T. Chromium; pH2    Suifate  D. Sulfur, pH2
Sample Collection Decon Procedure Sample Descript Sample Contain Quantity / /	on Method: Pump e: N/A Alcon tion (color, turbidity, od iners Size  SWML 500 ML	ox Wash	Type Type Poly Poly Poly Poly Poly Poly Poly Poly	Water Other:  Oder: ne sheen  Laboratory Analysis  T. Chromium; pH2  Suifate

Date: 10 17 12

Well ID: 885-4

### **Well Evacuation / Field Parameters**

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
0745	19.98	_0_	13.44	424	2.60	7.12	70.9	1.71
0750	19.98		13.27	416	1.14	6.82	94.6	1.02
0755	19.98		1313	410	0.68	6.73	112-0	0.95
0800	19.98		13.18	409	0.54	6:72	116.4	1.13
0805	19.98		13.18	409	0.49	6.75	117.7	0.47
0810	19.98		13:20	409	0.44	6.77	117.7	0.20
0815	19.98		13.21	410	0,40	6.78	118,1	0.31
0820	19.98		13.17	412	0.36	6.77	118.3	6.43
0825	19.98		13.18	412	0.35	6.78	118.0	0.43
0830	19.98		13-21	414	0.35	6.79	119,1	0.36
0835	19.98		13.19	414	0.34	6.79	119.2	6.39
0840	19.98		13.17	415	0.33	6.79	119.6	0-11
0845	19.98	<u> </u>	13.19	416	0.38	6.77	119,1	0.21
			- 1	- 1 %				

W.Su@	N IONS.	Gı	oundw	ater	Sampli	ng Re	cord
Project Name:	rontier Hard Chrom	ne - Event 18	Well ID:	B8-	1-8		
	113 Y St., Vancouve	r, WA 98661	Sample No.:	1210	0657 - 19	, ,	
l' -	10799.004.004.0002		Sampler(s):	Brian F	P. Reilly - WE	STON	
Date/Time:	27-1017/12		Weather:	fog	clouds;	~ 50°1	2
Water Level Mea	surements and Purge	Data					
Time	Depth of Well [	Depth to Water	Feet of Water in Well		Gallons per V dia. = 0.163 gal/ft,		
DPID	29.5 D Hist.	74.106 Initial	4.82	<del>-</del>	3-15		
Water Level Meas	urement Method: 📈 E	Electric Tape	. Other:	-			• • •
Well Evacuation M	lethod: 💢 Peristaltic F	Pump 🗖 Subr	mersible Pump	Baile	er 🗖 Other:		
Purge Rate:	~200 mymin	· .				. ,	
Begin Purge:	Time: <u>0925</u>	·	Total Volume	Purged:	~3 gel		
End Purge:	Time: <u>/025</u>	·= 'i · · ·	Well Volumes	Purged:			
Purge Water Dispe	osed: 55-gal Drum astic Buckets to be	Storage	Tank 🗖 Gro	und 🗖	Liquibin Lity Operation	Other:	lang -
	n Method & Analysis		<del></del>			4.5	1
Sample Type:	Groundwater 🗖	Surface Water	Other:				· .
Sample Time:	1030				,		;
Sample Collection	Method: X Pump Typ	e:Peristaltic	Dedicated Y	JN 🗖	Bailer 🗖 Oth	ier;	:
Decon Procedure:	N/A Alconox	Wash 🗖 Tap	Rinse 🗖 DI	Water	Other:		•
Sample Descriptio	n (color, turbidity, odor,	sheen, etc.):	clear slig	W 51	ho oder je	10 sheer	
Sample Contain	ers		J		, -		
Quantity	Size	Bottle ²	Гуре	Laborato	ory Analysis		
	500 mL	☐ Glass	Poly -	T. Chro	mum jpH =	<u> </u>	
Ø /	500ML	☐ Glass	Poly	D. Ch	omium; pH2	<u>- 1</u>	
	500 mL	☐ Glass	Poly	Cham	um (VI)	unpres	<u>&gt;·</u>
• /	500 mL	☐ Glass	Poly	Sulfa	te .	<u> </u>	<del></del>
<del>0</del> /	500 mL	□ Glass	Poly	D. S.	Mr. pH:	2-1	
		☐ Glass	Poly				<del></del> _
Notes: Ofifued	- pump from	127' bas			.   81	دطنه م.مد	ر مطلامین
@ had difficult	ty gettine tribing di	con well a	Hablied wight, so Dep	nt and M to U	wast. may	imedicon	,hg.
Sampler Signatur		120					

Date: 10 | 17 | 12

Well ID: 857-8

#### **Well Evacuation / Field Parameters**

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
0925	24.68	$\phi$	13.26	101	6.92	6,42	91.1	158
<u>0930</u>	24.68		13.30	128	4.52	10.64	56-6	130
09135	24.68		13.32	-146	3.38	6.65	48.3	115
0940	24.68		13.34	168	2.91	6.67	40.2	102
0945	24.68		13:38	197	2,43	6.71	28.7	97-0
0950	24.68		13.43	250	2.10	6.73	13.9	46.0
0955	24.68		13-38	300	1.26	6.75	-2.8	26.5
1000	24.68		13.38	340	0,86	6.77	-12-8	16.7
1005	24.68		13.38	364	0.68	6.78	-16.5	10-4
1010	24.68	-	13:38	375	0,52	6.79	-16-8	9.43
1015	24.68		13.32	384	0.48	6.79	-16.3	9:16
1020	24.68	14/100	13.28	392	0.46	6.79	-167	3.36
1025	24.68		13,29	394	0.42	6.79	-16.5	747
					-			
					-	•		

W.ESII	HONS.	Gı	roundw	ater Sampling Record
Project Name:	Frontier Hard Chron	ne - Event 18	Well ID:	W97-18A
Project Location	113 Y St., Vancouve	er, WA 98661	Sample No.:	1210057-14
Project Number:	10799.004.004.000	2	Sampler(s):	Brian P. Reilly - WESTON
Date/Time:	10/17/12	1130	Weather:	partly cloudy; ~55°F
Water Level Me	asurements and Purge	Data	e_ =	
Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Water in Well	Gallons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
_//35	27.5 D Meas. A Hist.	19.59 Initial	7.96	1.30
Water Level Mea	surement Method: X	Electric Tape	Other:	
Well Evacuation	Method: X Peristaltic I	Pump 🗖 Subr	mersible Pump	Bailer Other:
Purge Rate:	~200 ml/min			
Begin Purge:	Time: //40		Total Volume	Purged: ~3 gal.
End Purge:	Time:/1235		Well Volumes	U
	posed: 55-gal Drum			und Liquibin X Other: buver's City Operation Center
	on Method & Analysis			
Sample Type:	Groundwater	Surface Water	Other:	
Sample Time:	1240			
Sample Collection	n Method: 💢 Pump тур	e: Peristaltic	Dedicated Y C	□ N □ Bailer □ Other:
Decon Procedure	e: X N/A  Alconox	Wash 🗖 Tap	Rinse 🗖 DI	Water Other:
Sample Descripti	on (color, turbidity, odor,	sheen, etc.):	clear, no	odor; no sheen
Sample Contai				
Quantity	Size	Bottle 7		Laboratory Analysis
j	500mL	☐ Glass	Poly	T. Chromon; 7H21
		☐ Glass	Poly	
		☐ Glass	☐ Poly	•
•		☐ Glass	Poly	
		☐ Glass	Poly	
			☐ Poly	
Notes: -pom	p from 25'55			
Sampler Signatu	ire: 3 T	0		

Date: 10/17/17 Well ID: W97-18A

Well	Evacu	ation	/ Field	<b>Parameters</b>
AAGII	Evacu	auvii	/ Field	rai ailletei 3

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1140	19.54	<u>\$</u>	13.74	175	3.11	6.42	115-0	1.65
1145	<u> 19.54</u>		13.74	175	1,91	6.27	133,9	0.90
1150	19.54	·	13.78	173	1.32	6.26	140.8	O.lelp
1155	19.54		13-84	173	1.25	6.27	1437	0.62
1200	19.54	· ·	13.75	173	1017	6,25	145.6	0.43
1205	19.54	<u>.</u>	13.71	172	1.16	6.25	149.2	<u>0.40</u>
1210	19.54	· · · · · · · · · · · · · · · · · · ·	13.87	172	1.11	6.27	141.2	0.39
<u> 1215</u>	19.54		1376	172	1.09	6.26	149.5	0.37
1220	19.54		13.77	172	1.06	6.25	149.4	0.39
1225	19.54	· · ·	13.77	173	1.03	6.25	148.3	0.42
1230	19.54	·	13.78	173	1.01	6.26	149,4	0.39
1235	19.54		13.75	173	1.00	6.25	150.4	0.37
				<del></del>	· · · · · · · · · · · · · · · · · · ·			<del></del>
					·	· ,		
	· · ·							
		<u>.</u>						
·								

WEST!	IN HOSS.	Gı	roundw	ater	Sampling	g Reco	rd
Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	RA-	MW-17A		
Project Location	113 Y St., Vanco	uver, WA 98661	Sample No.:	121	0057-15		
Project Number:	10799.004.004.0	002	Sampler(s):	Brian.	P. Reilly - WEST	ΓΟN	
Date/Time:	10/17/12	1320	Weather:_	Hanni	1 sunny, ~ 60	°F	<del></del>
Water Level Me	asurements and Pur	ge Data	· ·	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Water in Well	_	Gallons per Well dia. = 0.163 gal/ft, 4° d		
1320	26.4	20.88	5.52	_	0,90		
<del>.</del>	☐ Meas.	Initial	·. ·				
Water Level Mea	surement Method:	Electric Tape	Other	- <u>-</u>		e e	
Well Evacuation	Method: 📈 Peristali	tic Pump 🔲 Subr	mersible Pump	☐ Bail	er 🗖 Other:	A 1 / 1 / 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Purge Rate:	~200 ml/n	i)~	•	-		· · · · · · · · · · · · · · · · · · ·	
Begin Purge:	Time: <u>1330</u>		Total Volume	Purged:	~ 3 gel		
End Purge:	Time: 1425				<u> </u>		
Purge Water Dis 5-gallon F	posed:	rum DStorage oe disposed at 0	Tank Gro	und  und  uver's (	Liquibin X C		
	on Method & Analys						
Sample Type:	Groundwater	Surface Water	Other:			-	
Sample Time:	1635 1430	_			•	į.	. 14
Sample Collection	n Method: 💢 Pump	туре: <u>Peristalt</u> iç	Dedicated Y	אכ 🗖	Bailer 🗖 Other:		
Decon Procedure	: 📈 N/A 🗀 Alcon	ox Wash 🔲 Tar	Rinse 🗖 Di	Water	Other:	•	
Sample Descripti	on (color, turbidity, od	or, sheen, etc.):	clear; no	odor.	; no sheen		
Quantity	Size	Bottle ⁻	Гуре	Laborate	ory Analysis		
	SoomL	☐ Glass	Poly	T. Chn	omium; DH = 1	,	
	0000	☐ Glass	Poly				<del></del> .
		☐ Glass	☐ Poly				
•	<del></del>	☐ Glass	☐ Poly				
		. ☐ Glass	☐ Poly	· · · · · · · · · · · · · · · · · · ·			_
		☐ Glass	D Poly				
Notes:	Fran 24' bgs						<del></del> .
- 10 4	20 in wellhead						
- mode	ate Seal						
Sampler Signatu	ire:	20)					

Date: 10/17/12

Well ID: RA-MW-17A

#### **Well Evacuation / Field Parameters**

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1330	2088		13.09	1112	1.79	6.52	-18.5	6-13
1335	20.90		13-02	1123	0.92	6.56	-29.6	1.30
1340	20.90		13.01	1122	0.78	6.55	-30-7	0.69
1345	20.90		13.02	1113	0.72	6,55	-30-7	0,99
1350	20.90		13-02	1100	0.60	6.54	-32.3	0.43
1355	20.90		13.04	1092	0.56	6.54	-31.4	0.51
1400	20.90		13.02	1081	0.50	6.53	-329	0.78
1405	20.90		13.01	1076	0,49	6.53	-33.3	0,39
1410	2090		13.02	1067	0.47	6.53	-33.4	0.72
14,5	20,90		13-03	1063	0.45	6.53	-33.6	0.87
1420	2090		13.05	1056	0.48	6.53	-35.9	0.86
1425	20.90		13-04	1052	0.37	6-52	-35.4	0.64
	*							
					10 = 1		-	-

Project Name: Frontier Hard Chrome - Event 18 Well ID: W92-14A Project Location: 113 Y St., Vancouver, WA 98661 Sample No.: 113 Y St., Vancouver, WA 98661 Sample No.: 113 Y St., Vancouver, WA 98661 Sample No.: 113 Y St., Vancouver, WA 98661 Sample No.: 113 Y St., Vancouver, WA 98661 Sample No.: 114 St., Value 1-14 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sample No.: 115 Sa	VXL <del>S</del> SIC	IIOSS.	Gı	roundw	ater	Samplin	g Red	ord
Project Number: 10799.004.004.0002   Sampler(s): Brian P. Reilly - WESTON  Date/Time: 101712   1455   Weather: 10054   Sample \( \) Weather: 10054   Sample \( \) Sampler(s): Brian P. Reilly - WESTON  Water Level Measurements and Purge Data  Time	Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	way	2-16A:	-	
Water Level Measurements and Purge Data  Time Depth of Well Depth to Water Feet of Water (TOC) in Well (2° dia. = 0.183 gal/ft)	Project Location:	113 Y St., Vancou	ıver, WA 98661	Sample No.:	12100	57-16	<u> </u>	
Water Level Measurements and Purge Data  Time Depth of Well Depth to Water Feet of Water (TOC) in Well (2° dia. = 0.183 gal/ft)	Project Number:	10799.004.004.00	002	Sampler(s):	Brian	P. Reilly - WES	TON	
Time Depth of Well CTOC) in Well CTOC in Well C2 dia. = 0.183 gal/ft)   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC   CTOC		-		Weather:	most	ly sonny · ~	65°F	1.1.5
Water Level Measurement Method:	Water Level Me	asurements and Pur	ge Data				· · · · ·	<u>· · · · · · · · · · · · · · · · · · · </u>
Water Level Measurement Method: Peristattic Pump Submersible Pump Bailer Other:  Well Evacuation Method: Peristattic Pump Submersible Pump Bailer Other:  Purge Rate:	Time	•	• .		r (2			/ft) · · ·
Water Level Measurement Method: Peictric Tape of Other:  Well Evacuation Method: Peristaltic Pump Submersible Pump Bailer Other:  Purge Rate:	1455	34	20,56	13-44	- -	8.78		
Well Evacuation Method: Peristaltic Pump Submersible Pump Bailer Other:  Purge Rate:		☐ Meas. A Hist.	Initial					
Well Evacuation Method: Peristaltic Pump Submersible Pump Bailer Other:  Purge Rate:								
Begin Purge: Time:   500								
Begin Purge: Time:   500   Total Volume Purged:   2	Well Evacuation	Method: 💢 Peristali	tic Pump 🔲 Subi	mersible Pump	∟ Bai	ler . Other:	· Y	· · · · · · · · · · · · · · · · · · ·
Purge Water Disposed:	Purge Rate:	~ 200 myn	นุก			•	•	ľ
Purge Water Disposed:	Begin Purge:	Time: 1500	<u> </u>	Total Volume	Purged:	~3 gel	·	
Sample Collection Method & Analysis  Sample Type:  Groundwater  Surface Water  Other:  Sample Time:	End Purge:	Time:/ <u> </u>	<u> </u>	well volumes	Purgea:		·	
Sample Type:  Groundwater  Surface Water  Other:  Sample Time:	Purge Water Disp 5-gallon F	posed: 55-gal Di Plastic Buckets to b	rum 🔲 Storage pe disposed at (	Tank	ound L ouver's			
Sample Time: // CO  Sample Collection Method: Pump Type: Peristaltic Dedicated Y IN Bailer Other:  Decon Procedure: N/A Alconox Wash Tap Rinse DI Water Other:  Sample Description (color, turbidity, odor, sheen, etc.): Clear no oder no share  Sample Containers  Quantity Size Bottle Type Laboratory Analysis    Glass Poly	Sample Collecti	on Method & Analys	is		٠.			
Sample Collection Method: Pump Type: Peristaltic Dedicated Y N Bailer Other:  Decon Procedure: N/A Alconox Wash Tap Rinse DI Water Other:  Sample Description (color, turbidity, odor, sheen, etc.): Clear no oder no square.  Sample Containers  Quantity Size Bottle Type Laboratory Analysis    Glass Poly Chromism of 2     Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly    Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly	Sample Type:	Groundwater	Surface Water	Other:		· · · · · · · · · · · · · · · · · · ·	- 2122	<del></del>
Decon Procedure: N/A Alconox Wash Tap Rinse DI Water Other:  Sample Description (color, turbidity, odor, sheen, etc.): Clear, no oder no Shen  Sample Containers  Quantity Size Bottle Type Laboratory Analysis    Glass Poly T. Chromism, pH = 1     Glass Poly			<u>.</u>		· <u>.                                 </u>	·		e digital
Sample Description (color, turbidity, odor, sheen, etc.): Clear, no oder, no sheen  Sample Containers  Quantity  Size  Bottle Type  Laboratory Analysis  Glass  Poly  Glass  Poly  Glass  Poly  Glass  Poly  Glass  Poly  Glass  Poly  Glass  Poly  Glass  Poly							r: ,	
Sample Containers  Quantity Size Bottle Type Laboratory Analysis  Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly	Decon Procedure	e: 💢 N/A 🔲 Alcon	ox Wash 🏻 🗖 Ta	Rinse 🗖 D	l Water	Other:	•	,
Sample Containers  Quantity Size Bottle Type Laboratory Analysis  Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly	Sample Descripti	on (color, turbidity, od	lor, sheen, etc.):	clear no	oder	no syeen		<u>/ U</u>
						•		
Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Glass Poly Poly Poly	Quantity	Size	Bottle	Туре				į
Glass		500 mL	☐ Glass	Poly	T. Chi	romium; pH=1	<u> </u>	
Glass			☐ Glass	☐ Poly		·	<u> </u>	<del></del> ·
Glass D Poly  Glass D Poly			Glass	☐ Poly				·
Glass D Poly	•		🗇 Glass	☐ Poly				
			☐ Glass	☐ Poly		<u> </u>	<u></u>	
Notes: -pemp from 27'bgs			☐ Glass	☐ Poly	-		<del></del>	<del></del> .
	Notes: -pemp	from 27'bgs					-	·
							,	
Sampler Signature:			200					

Date: 10/17/12

Well ID: w92-16A

### Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1500	20,56	\$	14.19	347	2.20	6.71	76.6	4.37
1505	20.56		14.31	345	1-46	6.65	83.3	1-86
1510	20.56		14.32	345	0.80	6.61	90.0	3.53
1515	20.56		14.29	344	0.50	6.59	94.3	1.72
1520	20,56		14.40	344	0.42	6,57	100.6	1.84
1525	20.56	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.90	344	0.38	6.56	104.4	1,06
1530	20.56		13.89	344	0.31	6.55	169-8	2.18
_1535	20.56		13.87	343	0.29	6.57	110-3	2.11
1540	20.56		13.84	343	0.27	6.57	110.3	1-76
1545	20.56		13.84	343	0.26	6.58	110-2	2-13
1550	20.56		13.87	343	0.25	6.59	110,4	1.33
1555	20.56		13.88	343	0.24	6.60	111.3	1.33
	<u> </u>	-1 w-c	3=3					
				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				

WAS I	N CHOSE	G	roundw	ater Samp	oling Record
Project Name:	Frontier Hard Chr	ome - Event 1	8 Well ID:	W92-16B	
Project Location	113 Y St., Vancou	ver, WA 9866	1 Sample No.:	1210057-15	<del></del>
Project Number:	10799.004.004.00	002	Sampler(s):	Brian P. Reilly -	WESTON
Date/Time:	10/17/12	1605	Weather:	mostly sunr	14: ~65°F
Water Level Me	asurements and Pur	ge Data			
Time	Depth of Well (TOC)	Depth to Water (TOC)	r Feet of Wate in Well	•	er Well Volume al/ft, 4° da.=0.653 gal/ft)
1605	<u>45</u> □ Meas. A Hist.	20.45 Initial	24.55		<u>3</u>
1705	<b>A</b>				
	surement Method:	Electric Tape	Other:		•
	· · · ·	. <u></u>		Bailer Othe	<b>PE</b> ,
Purge Rate:	~200 mulm	<u> </u>			t
Begin Purge:	Time: /605		Total Volume	Purged: <u>~3 s</u>	·
End Purge:	Time:		Well Volumes	Purged:	
Purge Water Dis 5-gallon F	posed:	um 🔲 Storage	Tank 🗖 Gro	und 🗖 Liquibin	Other:
	on Method & Analys				
Sample Type:	Groundwater	Surface Wate	r 🗖 Other:		· · · · · · · · · · · · · · · · · · ·
Sample Time:	1710	_		<u> </u>	
Sample Collectio	n Method: X Pump	туре: <u>Peristalt</u> ic	Dedicated Y	Jn 🗖 Bailer 🗖	Other:
Decon Procedure	e: 💢 N/A 🔲 Alcon	ox Wash 🔲 Ta	ap Rinse 🗖 D	Water Other:	•
Sample Descripti	on (color, turbidity, od	or, sheen, etc.):	clear, no	derprosh	en
Sample Contai	ners		•	-	
Quantity	Size		Type	Laboratory Analysis	
	500 ML	☐ Glass	A Poly	T. Chronium	· 21/21
		☐ Glass	☐ Poly	·	<u> </u>
·		☐ Glass	☐ Poly		· · · · · · · · · · · · · · · · · · ·
•		🗖 Glass	☐ Poly		
		. 🗇 Glass	☐ Poly		
	·	☐ Glass	☐ Poly		
Notes: pump	From 27' 693				
<b>'</b> .	<b>)</b>				
		·			·
Sampler Signatu	ıre:	20			

Date: 10 17/12

Well ID: 092-168

### **Well Evacuation / Field Parameters**

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1605	20.45	<u>&amp;</u>	14.19	279	7.61	693	107.2	645
1610	20.48	· ·	13.68	273	8.87	6.88	142-4	1.56
1615	26.48		13.62	273	8,88	6.88	143.5	1.23
1620	20.48		13.59	273	8.89	6.89	144.6	0.88
1625	20.48		13.58	273	8.82	6.92	143-1	0.72
1630	20.48		13.54	273	8.42	6.92	141.8	0.69
1635	20.48		13.52	272	9,49	6.92	141.2	0.73
1640	20.48		13-79	272	8.80	6.94	140.4	0.56
1645	20.48		13.50	272	9,31	6.90	141.7	0.42
1650	20.48		13,49	271	9,24	6.93	139.1	0.50
1455	20.48		13.44	271	9.44	6.93	138.3	0.55
1700	20.48		13.43	271	9.18	6.93	138.0	0-84
1705	20.48		13.43	271	9.27	6.93	134.2	0.52

WEST	EN .	Gı	oundw	ater Sampling Record
Project Name:	Frontier Hard Chro	ome - Event 18	Well ID:	RA-MW-WAISA
Project Location	ı:113 Y St., Vancou	ver, WA 98661	Sample No.:	1210057 -18
Project Number	10799.004.004.00	002	Sampler(s):	Brian P. Reilly - WESTON
Date/Time:		0745	Weather:	fogy ~Sore
Water Level Me	easurements and Purg	ge Data		
Time	Depth of Well (TOC)	Depth to Water (TOC)	in Well	Gallons per Well Volume (2"dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
0750		20.71 Initial	5.89	0.96
Water Level Me	asurement Method:	Electric Tape	Other:	
Well Evacuation	Method: X Peristalti	ic Pump 🗖 Subi	mersible Pump	Bailer Other:
Purge Rate:	~200 my min	•		· · · · · · · · · · · · · · · · · · ·
Begin Purge:	Time: 0800		Total Volume	Purged: ~35d
End Purge:	Time: 085.5	<u>, - '-                                 </u>	Well Volumes	Purged:
Purge Water Dis 5-gallon	sposed: 55-gal Dr Plastic Buckets to b	um DStorage oe disposed at 0	Tank 🗖 Gro	und D Liquibin 💢 Other: ouver's City Operation Center
	tion Method & Analysi		: Y	
Sample Type:	Groundwater	Surface Water		
Sample Time:	<u>0900</u>	<b>;</b> ~-′		<u>_</u>
Sample Collection	on Method: 💢 Pump	туре: <u>Peristalt</u> ic	Dedicated Y	On Bailer Other:
Decon Procedur	e: N/A Alcon	ox Wash 🔲 Ta	Rinse 🗖 Di	Water Other:
Sample Descript	tion (color, turbidity, ode	or, sheen, etc.):	dor no	odor; no sheen
Quantity	Size	Bottle	Туре .	Laboratory Analysis
<i>f</i>	500 mL	☐ Glass	<b>≱</b> Poly	T. Chremium, gH=1
		☐ Glass	☐ Poly	
	-	☐ Glass	☐ Poly	
•		☐ Glass	☐ Poly	
-		. 🗖 Glass	D Poly	
• .	-	☐ Glass	☐ Poly	
Notes: Sump	from 24'bgs		•	· · · · · · · · · · · · · · · · · · ·
Sampler Signal	ture:			•

Well ID: PA-MW-ISA

# Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
0800	20.71	<u>\$</u>	13.28	1139	2912	656	27.7	7.56
0805	20.71	· ·	13.26	1137	2.09	10.47	22.5	1.68
08/10	20.71		13 A	1136	1.26	6,49	19.3	4.72
<u>0815</u>	20.71		13.16	//33	0.87	6.50	14.2	9.10
0820	20.71		<u>13.13</u>	<u>//35</u>	0.76	6.50	11,2	22.4
0825	20.71		13.07	1132	0.64	6.51	8.0	0.68
0830	20.71		13.10	1125	059	651	6.9	0.24
0835	20.71		13.10	1118	0.53	6.52	5.0	0.30
0840	20.71	· · ·	13.00	1117	0,50	6.52	4.7	1.87
O845	20.71		13.08	1111	046	<u>6.53</u>	37	1.33
0850	20.71	· .	13.13	1107	0.44	<u>in.53</u>	26	0-19
0855	20.71	<del></del> .	13.14	1108	0.42	6.53	2.6	0-18
								<del></del>
	·			<u> </u>	<del> </del>	· ,		
	· · ·	<del></del>			•		<del></del>	<del></del> -
				<del></del> -	<del></del>	· .		
								1

O Received L Lo error on historinates, re-ran w/ no error but much lower value; likely prev. mondo were not accorde.

WASTIGE STREET	IIII	Gı	oundw	vater Sampling Record
Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	RA-MW-15B
Project Location	: <u>113 Y St., Vanco</u> ւ	iver, WA 98661	Sample No.:	1210057-19 (QA-3=1210057-20
Project Number:	10799.004.004.00	002	Sampler(s):	Brian P. Reilly - WESTON
Date/Time:	10/18/12	<u>0100</u>	Weather:	partly dowly, ~55°F
Water Level Me	asurements and Pur	ge Data		
Time	Depth of Well (TOC)	"Depth to Water (TOC)	Feet of Wate in Well	Gailons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
0900	32.7	<u>20.69</u>	12.01	
	☐ Meas. A Hist.	Initial	~	
Water Level Mea	surement Method:	Electric Tape	Other:	
			i i	Bailer Other:
	~200 mymin		:	, ,
•			Total Volume	Purged: ~3 < Jel
	Time: 1005			
Purge Water Dis	posed: 55-gal Dr	um Storage	Tank 🗖 Gro	ound Liquibin Cother:  Ouver's City Operation Center
	on Method & Analys		• ;	The gradient of the second
Sample Type:	Groundwater	Surface Water	Other:	
Sample Time:	1010		197 Bur	
Sample Collection	n Method: X Pump	туре: <u>Peristalt</u> ic	Dedicated Y	□N □ Bailer □ Other:
Decon Procedure	e: 💢 N/A 🔲 Alcon	ox Wash 🔲 Tar	Rinse 🗖 D	ol Water
Sample Descript Sample Contai		or, sheen, etc.):	clear; no	der, no sheen
Quantity	Size	Bottle	Туре	Laboratory Analysis
/	500 mL	☐ Glass /	A Poly	T. Chromun : 9H21
01	500 mL	☐ Glass	Poly	D. Chromium ; pH2/
	<u>Job Ma</u>	Glass	☐ Poly	
- AQ	ع	☐ Glass	☐ Poly	
	500 mL	☐ Glass	Poly	T. Chronium; pH21
0,	SOU ML	☐ Glass		D. Chronium pH=1
Notes: pom	from 27'by3		tin	L=1018
Sampler Signati	ure: 57	8		e

Well ID: RA-MW-15B

# Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO ِ َ ، رِ (mg/L)	рН	; ORP (mV)	Color/ Turbidity
0905	20.69	Ø	13.17	384	5.29	7.07	17.7	0.87
0910	20.69		1316	388	1.68	7.25	195	0.58
0915	20.69		13.16	388	1.23	7.26	31.3	0.38
0920	20.69		13.17	388	0.76	7.27	<u> 439</u>	0.42
0925	20.69		13.19	388	0.59	7.27	47.4	080
0930	20.69	·	13.19	388	0.46	7.26	<u>53.9</u>	0.48
0935	2018		13.28	388	0.58	7.25	56.1	0.57
0940	20.69		13-18	388	0.46	7.24	62.60	0.56
0945	20.69	· · ·	13.18	388	041	7.24	104.10	0.40
0950	20.69	· .	13.16	388	0.36	7.23	67.0	0.44
0955	20.69		13.24	389	0.21	7.24	Tole?	0.26
1000	20.69		13.22	<u>388</u>	0.20	7.22	67.9	0.22
1005	20.69		13.23	388	019	7.23	47.0	0.31
	·			· · · · · · · · · · · · · · · · · · ·	<del></del>		·	
<del></del>	· · · · · · · · · · · · · · · · · · ·	<del></del>	· · · · · · · · · · · · · · · · · · ·		<del></del>	<del></del>		
· .						-		
						· .		

WEST	N HONS.	Gı	roundw	ater Sampling Reco	rd
Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	PA-MW-16A	
Project Location:	113 Y St., Vancou	uver, WA 98661	Sample No.:	1210057-21	
Project Number:	10799.004.004.0	002	Sampler(s):	Brian P. Reilly - WESTON	
Date/Time:	10/18/12	/035	Weather:	mostly sonny, Noo"E	<del></del>
Water Level Me	asurements and Pur	ge Data	٠.		
Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Water in Well	r Gallons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)	
_/035	26.8 □ Meas. A Hist.	19-79 Initial	7.01		<b>-</b>
Water Level Mea	surement Method:	Electric Tape	Other:		
Well Evacuation	Method: 💢 Peristall	tic Pump 🗖 Subi	mersible Pump	Bailer Other:	·
Purge Rate:	~200 ml/mi	~		•	·
Begin Purge:	Time: 1040		Total Volume	Purged: ~3sd	
	Time: <u>// 40</u>		vveii voiumes	Purged:	• •
Purge Water Disp 5-gallon F	posed:	rum 🔲 Storage be disposed at (	Tank	ound Dund Liquibin A Other:	
	on Method & Analys		. •,		
Sample Type:	Groundwater	Surface Water	_		
Sample Time:	1145	<u>.</u>			•
•				🗆 N 🔲 Baller 🔲 Other: .	
Decon Procedure	o: 💢 N/A 🔲 Alcon	ox Wash 🔲 Tar	Rinse 🗖 DI	l Water 🔲 Other:	• •
Sample Descripti	on (color, turbidity, od	or, sheen, etc.):	clow; no	der, no sheen	
Sample Contain	ners		. 1.		
Quantity	Size	Bottle ²		Laboratory Analysis	
	500 mL	☐ Glass	Poly	T. Chromium; pH21	
		☐ Glass	☐ Poly		
,		☐ Glass	☐ Poly		<del>.</del>
		☐ Glass	Poly		
		☐ Glass	☐ Poly		
	•	☐ Glass	Poly		
Notes: - Pump	From 24' bgs			·	•
			•		
Sampler Signatu	ire: 3	ng			

Date: 10/18/12 Well ID: PA - MW - 16A

Well	<b>Evacuation</b>	/ Field Parameters
		,

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1040	19:79	<u></u>	1346	885	2.36	650	1.4.1	1.68
1045	20-55	<u></u>	1347	894	1.87	6.51	102.3	1.13
1050	20.55	an krajiken	1349	902	0.84	6.53	989	1.18
1055	20.55		13,43	910	0.76	652	84.1	1.23
1100	20.55		13.39	918	0.42	6.53	75.0	0.98
1105	20-55		13.52	922	0.56	4.52	68.8	0.56
_1110	20.55		13-58	921	0.52	6.52	69.1	0.46
ins	20.55		13.49	924	0.51	6.51	69.8	0.37
1120	20.55		13.27	921	0.48	6.51	69.6	0.40
1125	20.55	-	13.26	919	0.46	6.52	67.8	0.35
1130	2055		13.27	920	0.44	6.53	68-8	0.23
1135	20.35		13.32	920	0.42	6.53	67,1	0.53
1140	20:35		13.33	919	0,43	6.54	67.2	0.63
						3		
					N. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10		Management of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	

WEST		Gr	oundw	ater Sampling Record
Project Name:	Frontier Hard Chr	ome - Event 18	Well ID:	RA-MW-16B
11 -	7 - ". " - "	ver, WA 98661	Sample No.:	1210057-22
Project Number:	10799.004.004.0	002	Sampler(s):	Brian P. Reilly - WESTON
Date/Time:	10/18/12	1145	Weather:	guny, ~65°F
Water Level Me	easurements and Pur	ge Data	-	
Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Water in Well	Gallons per Well Volume (2*)dia. = 0.163 gal/ft, 4* dia.=0.653 gal/ft)
_1145	32.7 O Meas. O Hist.	26.37 Initial	12.38	2.02
Water-Level Mea	asurement Method:	Electric Tape	. Other:	
Well Evacuation	Method: Peristal	tic Pump 🗖 Subi	mersible Pump	Bailer Other:
Purge Rate:	~200 mL/mi.	<u>~</u>		
	Time: //50		Total Volume	· ·
End Purge:	Time: 1250	·	Well Volumes	Purged:
Purge Water Dis 5-gallon I	sposed:	rum DStorage oe disposed at (	Tank Gro	und Liquibin X Other: ouver's City Operation Center
	ion Method & Analys			
Sample Type:	Groundwater	Surface Water	Other:	
Sample Time:	1255			
Sample Collection	on Method: N Pump	туре: <u>Peristalt</u> ic	Dedicated Y	□ N □ Bailer □ Other:
Decon Procedur	e: 💹 N/A 🔲 Alçon	ox Wash 🔲 Ta	Rinse 🗖 Di	Water Other:
Sample Descript		lor, sheen, etc.):	clear; no	der no streen
Quantity	Size	Bottle	Туре	Laboratory Analysis
	Some	☐ Glass	Poly	T. Chromium: 3H21
		☐ Glass	Poly	
		☐ Glass	D Poly	
·		☐ Glass	D Poly	
		☐ Glass	☐ Poly	
		☐ Glass	Poly	
Notes:	p from 27 bys		_	
·		,	~	
Sampler Signat	ure:	126	$\rightarrow$	

Well ID: PA-MW-16B

### **Well Evacuation / Field Parameters**

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (μS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1120	20.32	<u></u>	13.41	429	2.66	7.19	43.8	0.93
1155	20,38		13.44	889	0.56	6.72	103.7	1.32
	20,38		13-46	910	0.46	6.73	106.4	0.97
	20.38		13,51	927	0.35	6.74	110.1	0.60
12151211	20.38		13.73	901	0-31	6.75	110.4	0.96
1215	20.38		13.74	881	0.26	6-76	110.7	1.02
1220	20.38		13.54	859	0.24	6.77	112-2	1.09
	20.38		13-54	847	0.22	6.78	113.7	0.94
1730	20.38		13.57	821	0.21	6.80	113.5	1.45
1235	20.38		13.67	807	0-21	6.81	112.4	0.38
1240	20.38		13.54	797	0.21	6.81	110.4	0.45
1245	20.38		13-55	783	0.20	6.82	106.1	0.34
1250	20.38		13.41	781	0.17	6.83	110.H	0.18

O flow rate dropped; adjusted pump speed to compensate.

WASIO	N OSS.	Gı	oundw	ater	Sampling I	Record
Project Name: F	rontier Hard Chr	ome - Event 18	Well ID:	2A-1	1W-12C	
Project Location:	13 Y St., Vancou	ver, WA 98661	Sample No.:	121	0057-28	
Project Number:	0799.004.004.00	002	Sampler(s):	Brian.	P. Reilly - WESTON	1
Date/Time:	10/18/12	1320	Weather:	parth	4 closely: ~ 165°	P
Water Level Meas	surements and Purg	ge Data		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Time	Depth.of Well (TOC)	Depth to Water: (TOC)	Feet of Water in Well		Gallons per Well Vol	
1320 1325	- 39 - 2 ☐ Meas. Ø Hist.	2090	18.3	_	2.98	
	☐ Meas. ☐ Hist.	Initial	·.			
·	· · · · · · · · · · · · · · · · · · ·		<u>.</u>	_		<del></del>
Water Level Meas	urement Method: 🔀	Electric Tape	Other:			<u>-</u> ··
Well Evacuation M	ethod: 💢 Peristalti	ic Pump 🗖 Subi	mersible Pump	☐ Bai	ler 🗖 Other:	· · · · · ·
Purge Rate:	~200 mil min		·			
Begin Purge:	Time: 1325		Total Volume	Purged:	~3 gel	· 
End Purge:	Time: 1425		Well Volumes	Purged:		:
Purge Water Dispo	sed: 55-gal Dr astic Buckets to b	um DStorage be disposed at C	Tank Ground Ground	und 🗆	Liquibin A Othe City Operation Cent	
	n Method & Analysi					<i>r</i> *.
Sample Type: 💢	Groundwater (	Surface Water	Other:			·
Sample Time:	1430	_			•	
Sample Collection	Method: X Pump	туре: <u>Peristalt</u> ic	Dedicated Y	JN 🗖	Bailer 🗖 Other:	
Decon Procedure:	N/A Alçono	ox Wash 🔲 Tap	Rinse 🗖 DI	Water	Other:	
Sample Description	n (color, turbidity, ode	or, sheen, etc.):	clear no	oder	no speen	
Sample Contain					,	
Quantity	Size	Bottle ²	Гуре	Laborat	ory Analysis	•
1	500 ML	☐ Glass	Poly	T, C	hromium; pH21	,
		☐ Glass	☐ Poly			·
		☐ Glass	☐ Poly		•	
•		☐ Glass	🗖 Poly .			·
		☐ Glass	☐ Poly			
•		☐ Glass	☐ Poly			
Notes: - pum F	from 27'	ps				
	•	-				
		<b>→</b>	- <b>&gt;</b>			
Sampler Signature	: 5	700	$\rightarrow$			

Date: 10 18 12

Well ID: RA-MW-12C

# Well Evacuation / Field Parameters

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1325	20.90	<u>_</u> \$	13.61	722_	1.28	7.00	-177.2	0.82
1530	2090		13,30	714	0.97	7.07	-202.5	0.66
1335	20.90		13.28	680	0.43	7.72	-211.9	<u>0,31</u>
1340	20.90		13.29	476	0.57	7.12	-213.3	0.32
1345	20.90		13.27	470	0.52	7.73	-214,8	0.20
1350	20 90	<u> </u>	13.29	663	0.46	7.74	-218.6	0.28
1355	20,90	·	13.31	644	0.38	7.76	-220.3	0.36
1400	20.90		13.26	623	0.29	7.78	-217.3	0.42
1405	2090	. ·	13.20	606	0.28	777	-209.6	0.33
1410	20.90		13.18	596	0.39	7.76	-197.0	0.29
1415	20.90	·	13.23	580	0.42	7.77	-189.6	0.57
1420	20.90	<del></del>	13.21	548	0.47	7.77	-181.6	0.42
1425	20.90	•	13.23	<u>557</u>	0.49	7.78	-178.2	0.30
•				·			· 	
		<del></del>					·	
	<u> </u>		·		· · · · · · · · · · · · · · · · · · ·		·	
<u> </u>			·					

WASTEN.	Groundwater Sampling Record
Project Name: Frontier Hard Chrome - Ev	ent 18 Well ID: RA-MW-128
Project Location: 113 Y St., Vancouver, WA	98661 Sample No.: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Project Number: 10799.004.004.0002	
Date/Time: 10/18/12 143	O Weather: Overcast; ~ 65°P
Water Level Measurements and Purge Data	
Time Depth of Well Depth to (TOC) (TOC	Water Feet of Water Gallons per Well Volume  (2 dia. = 0.163 gal/ft, 4 dia.=0.653 gal/ft)
7	
Water Level Measurement Method: Electric	Γape Other:
	Submersible Pump  Bailer  Other:
Purge Rate: ~ 200 mUmin	
Begin Purge: Time: <u>/식경</u> 도	Total Volume Purged: ~ 3 gal
End Purge: Time: <u>/535</u>	Well Volumes Purged:
Purge Water Disposed: 55-gal Drum S 5-gallon Plastic Buckets to be dispos	torage Tank Ground Liquibin Other: ed at City of Vancouver's City Operation Center
Sample Collection Method & Analysis	•
Sample Type: 💢 Groundwater 🗖 Surface	Water Other:
Sample Time: <u>~ 200 ml/mis</u> /540	
Sample Collection Method: Rump Type: Peris	italtic Dedicated Y I N I Bailer I Other:
Decon Procedure: N/A Alconox Wash	☐ Tap Rinse ☐ DI Water ☐ Other:
Sample Description (color, turbidity, odor, sheen,	etc.): clear, sulfursmell; no sheen
Sample Containers	
Quantity Size	Bottle Type Laboratory Analysis
1 JOUAL	ilass Poly T. Chronium; pH21
	ilass 🗇 Poly
	alass
	ilass 🗇 Poly
	ilass
	ilass 🗇 Poly
Notes: -pump from 27 bys	
Sampler Signature:	<u></u>

i

Date: 10 18 12

Well ID: <u>PA - MW - 128</u>

### **Well Evacuation / Field Parameters**

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1435	21-00	<u> </u>	13.46	819	2.70	7.14	-120.7	3.20
1440	2102		13.36	897	0.82	7.23	-173.1	0.77
1445	21.02		13-32	892	0.55	7.28	-180.9	0,58
1450	21.02	<del></del>	13.28	888	0,38	731	-199.9	6.76
1455	21.02	· .	13.34	888	0.33	7.33	-194.0	0.67
1500	21.02	·	13.37	887	0.30	7.34	-197.5	0.50
<u>/505</u>	21.02		13.36	975	0,23	7.36	-2035	0.28
1510	21.02		13.38	873	0.21	7.37	-204-1	0.31
<u>/5/5</u>	21-02		13.38	870	0.21	7-37	-205-8	0,45
<u> 1520 </u>	21-02	· ·	13.44	868	0.19	7.38	-209.4	0.35
1525	21.02		13.44	862	017	7.38	-210,2	0.48
1530	21.02	<del></del> ,	13.43	859	016	7.37	-211.8	0.60
1535	21.02	<del></del>	13.45	855	0.20	7.40	-214.3	0.79
· - <del></del>				<u> </u>		·	· ———	
		<del></del>				<del></del>	· <del></del>	<del></del>
		·			<del></del>			
						• .		

- mod to strong sulfer smell throughout purging.

W.Suc	IIONS.	Gr	oundw	ater Sampling Reco	rd
Project Name:	Frontier Hard Chro	ome - Event 18	Well ID:	RA-MW-12A	e
Project Location:	113 Y St., Vancou	iver, WA 98661	Sample No.:	1210057-25 (1210057-26	COA
Project Number:	10799.004.004.00	002	Sampler(s):	Brian P. Reilly - WESTON	1A-4
Date/Time:	10/18/12	1545	Weather:	wereast; ~65°P	
Water Level Mea	asurements and Purg	ge Data			
Time	Depth of Well (TOC)	Depth to Water (TOC)	Feet of Wate in Well		
1545	Meas. Hist.	14_41 Initial	13.69	2.23	
Water Level Mea	surement Method:	Electric Tape	Other:		1
Well Evacuation	Method: X Peristalt	ic Pump 🗖 Subr	nersible Pump	Bailer Other:	
Purge Rate:	200ml/min				
Begin Purge:	Time: 1545	550	Total Volume	Purged: ~4.5 sel.	
End Purge:	Time: 1755		Well Volumes	Purged:	
Purge Water Disp 5-gallon P	oosed: 55-gal Dr	um Storage of Storage of Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contr	Tank Gro	ound Liquibin Nother:	, i
	on Method & Analysi			•	
Sample Type:	Groundwater	Surface Water	Other:		
Sample Time:					
Sample Collection	n Method: X Pump	туре: <u>Peristalt</u> ic	Dedicated Y	□ N □ Bailer □ Other:	
Decon Procedure	: X N/A Alcond	ox Wash 🗖 Tap	Rinse 🗖 D	Water Other:	
Sample Contain	on (color, turbidity, odd	or, sheen, etc.):	clear; str	ing sifer smell; no sheen	_
Quantity	Size	Bottle 7	Гуре	Laboratory Analysis	
	500 mL	☐ Glass	Poly	T. Chromium 17 H2/	
	500 mL	☐ Glass	☐ Poly	D. Chromium A21	
		☐ Glass	Poly		6
· OA-4		☐ Glass	☐ Poly		
	SounL	☐ Glass	Poly	T. Chamium: 2H21	
		Glass	Poly	Jamel Time = 1805	
Notes:	mp from 26	bys			
Sampler Signatu	7	RO			

Well ID: RA-MW-12A

### **Well Evacuation / Field Parameters**

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	ORP (mV)	Color/ Turbidity
1550	14.41	4	14.01	2046	4.88	7.45	-254.9	101
1555	16-83		13.85	2154	4.00	7.43	-261.5	68-1
1600	19.24	-	13.90	2140	4.79	7.41	-254.3	83.0
1605	21.25		13.94	2127	4.34	7.42	-256-4	119
1610	23-10		13.98	2124	4.39	7.43	-260.2	188
1415	24.45		13.98	2140	3.38	7.43	-246.8	158
1620	25.38		13.88	2181	3.41	7.44	-270.5	110
1025	26.48		13.67	2241	3.09	7.43	-299.1	69.6
B1630	27.56		13.58	2276	3.37	7.43	-274.8	68.8
1710	21.48		14.61	2300	2.95	7.55	- 295.0	86.2
1715	22.90		13.59	2293	2.47	7.48	-287.7	63.7
1720	24.50		13.60	2270	1.47	7.44	- 292-0	45.5
1725	25-15		13.63	2251	0.91	7.38	-295.3	8-39
1730	26.50		13.60	2258	2.26	7.39	-285.8	10-4
1735	26.78		13-58	2266	2.30	7.42	-280-5	17.1
9,740	27.55		13.55	2274	3.79	7.43	-275.4	ju. j
1755	24.40		1406	2271	288	7.50	-278	12.1

#### Notes

-very strong sulfur smell throughout.

[@] dropped dopth to 27 bgs.

⁽²⁾ dropped to 27.5'553 (3) 1632 H20 level drops below twise allowed well to recharge (9) 1742 H20 level again below, allow well to recharge

⁻recharging crate of ~1' per 5 minutes for .0326 golfmin or 123 milmin

# WESTERN

# **GROUNDWATER LEVEL DATA**

Page ____ of ____

Project N	ame: Frontier	Hard Chrome	- Event 18 L	Aleasurement Method: Water Level Electric Sounder
Project Lo	ocation: 113 Y	St., vancouve	1, VVA 30001 N	ogged By: Brian P. Reilly - WESTON
Project N	o.: 10799.004	4.004.0002	¹	ogged by.
Well No.	Log Time	Depth to Water (ft)*	Depth to Product (ft)*	Comments
NATI-RSA	12:09	27.46		Wellhood filled with 20, mod smal
NG)-25B	12:11	27.72		wellhood filed wiltzo, pour scal, from lock
N97-19A	12:24	17.84		willwed filed in H2D, good soul, hony upday
297-1918	12-25	17.16		**
198-201	12.36	21.74		New good on wellhed " good soul
W85-74	12:43	21.53		pour sect, no lock
WS5-76	12:44	2.73		11
598-21A	12:53	22.11		good seed: It is muth: no lak
258-213	12:55	22.31		and seal no to D is with no local
N85-6A	13:03	2117		med to good well no lock; only PUL Cap
N55-6B	13:04	21.10		med to good seal; no lock
USS-313	13 13	21.95		no with (motel place only-unskeled); med seel w/PUC or
192-16A	13:17	2089		par sal; shipped botts; ame Hadin with
W12-16B	13:19	20-77		for sal no bolts with filed and sandle
885.3	13.24	20.07		buried algrane / was med to find ) PK of only in
B67-8	13:29	20.98		with filled with to; nod. send with crapenty
B85-4	13,34	20.33		no Holin w/H- mod sel
WPH-18A		19.89		mod. gral no Hzi in with i no lock
			<u> </u>	
			· ·	· · · · · · · · · · · · · · · · · · ·
)				

#1 - Appears ariginal wellhood was warintermed and wow part. See photos.
#2 - content find W85-3A

# RECEIVED

JAN 1 4 2013



Weston Solutions, Inc.

23226 NE 29th Court

OFFICE OF Sammamish, Washington 98074 ENVIRONMENTAL CLEANUP

January 9, 2013

Guy Barrett Washington State Department of Ecology Toxics Cleanup Program P.O. Box 47600 Olympia, WA 98504-7600

**EVENT 18 LONG TERM MONITORING REPORT SUBJECT:** FRONTIER HARD CHROME SITE, **VANCOUVER, WASHINGTON** 

Dear Mr. Barrett,

Weston Solutions, Inc. (WESTON®) is pleased to submit one hardcopy of the Frontier Hard Chrome Event 18 Long-Term Monitoring Report. An electronic copy of this report was submitted to you via email on December 27, 2012. This report discusses the groundwater monitoring results that were obtained from site sampling on October 15 through October 18, 2012. During this sampling event, well B87-8 was sampled for hexavalent chromium.

Please feel free to contact me if you have any questions.

Sincerely,

Weston Solutions, Inc.

Greg Stuesse, PE, LG Senior Project Manager

(206) 715-6752

G.Stuesse@westonsolutions.com

Cc:

Claire Hong (U.S. EPA) Brian Reilly (WESTON) Project File